Thromb Haemost 1965; 13(01): 035-046
DOI: 10.1055/s-0038-1656285
Originalarbeiten — Original Articles — Travaux Originaux
Schattauer GmbH

Leukocytes and Thrombosis[*]

R. L Henry Ph. D.
1   Department of Physiology and Pharmacology Wayne State University, School of Medicine, Detroit, Michigan, U.S.A.
› Author Affiliations
Further Information

Publication History

Publication Date:
24 July 2018 (online)

Summary

White blood cells can no longer be considered simple trapped inclusions within thrombi. Their numbers in thrombi relative to blood counts increase with time. They appear to come from the blood flowing past the thrombus. They appear to migrate by amoeboid movement into the thrombic mass. Polymorphonuclear neutrophils have been shown to be lytic to fibrin and other proteins and thus can contribute to thrombus dissolution. There is increasing evidence that neutrophils may impart important cytotrophic function to proliferating cells during thrombus organization. Eosinophils are known to carr profibrinolysin and will release this precursor at sites of fibrin deposition. Mononuclear leukocytes can transform into fibroblasts in tissue culture and I consider a thrombus an ideal tissue culture medium. All of these cells can contribute to thrombus dissolution simply by mechanical weakening of the mass by migration into it, releasing enzymes, and allowing blood flow to carry away pieces of the thrombus as emboli. I extend my perspective on thrombosis by considering these intravascular solids as cell tissue cultures rather than simple blood clots or platelet aggregates.

* Preparation of tissue sections was aided by IT. S. Public Health Service Grant H-4176, Dr. M. H. Knisely, Med. College of South Carolina, Chief Investigator, and in vitro thrombus analysis was supported by Michigan Heart Association Grant 306 - 0640/xxx504.


 
  • References

  • 1 Henry R. L, Knisely M. H. Differences in thrombus formation and composition. International Symposium. Anticoagulants and Fibrinolysins. 165-172 Edited by MacMillan R. C, and Mustard J. F. Lea and Febiger; Phila.: 1961
  • 2 Welch W. H. Chapter on “Thrombosis”.. In: PajDers and Addresses. Vol. I, Pathology. 110-192 The Johns Hopkins Press; Baltimore: 1920
  • 3 Report of Ad Hoc Panel of the Committee on Pathology of the National Research Council on Forty-One Fatal Burn Injuries, Brook Army Medical Center, 1950-53
  • 4 Zahn W. Untersuchungen über Thrombose. Bildung der Thromben. Virchow’s Arch. path. Anat. 62: 82 1875;
  • 5 Wharton-Jones T. On the state of blood and blood vessels in inflammation. Guy’s Hosp. Rep. 7: 1-94 1851;
  • 6 Bizzozero G. Über einen neuen Formbestandteil des Säugetierblutes und die Bedeutung desselben für die Thrombosis und Blutgerinnung überhaupt. Zbl. med. Wiss. 20: 17-20 1882;
  • 7 Bizzozero G. Die Blutplättchen der Säugetiere und die “invisible corpuscles” von Norris. Zbl. med. Wiss. 20: 161-163 1882;
  • 8 Bizzozero G. Blutplättchen und Thrombose. Zbl. med. Wiss. 20: 563-564 1882;
  • 9 Welch W. H. The structure of white thrombi. Trans, path. Soc, Phila 13: 281-300 1887;
  • 10 Eberth G. J, Schimmelbusch G. Die Thrombose nach Versuchen und Leichenbefunden. 84 Ferdinand Enke; Stuttgart: 1888
  • 11 Eberth G. J, Schimmelbusch G. Die Thrombose nach Versuchen und Leichenbefunden. 61 Ferdinand Enke; Stuttgart: 1888
  • 12 Henry R. L. Morphology of experimental venous thrombi in the rat. Ph. D. Thesis. Library of the Medical College of South Carolina, Charleston, South Carolina 1961
  • 13 Henry R. L. Study of thrombosed blood vessels by quick-freezing and freeze-substitution fixation. In: Blood Coagulation, Hemorrhage and Thrombosis. Methods of Study. L. M. Tocantins and L. Kazal p. 141, Grime and Strattori, Phila, 1964
  • 14 Wright H. P, Kubik M. M, Hayden M. Recanalization of thrombosed arteries under anticoagulant therapy. Brit. med. J. 1: 1021-1023 1953;
  • 15 Gliffton E. E, Grossi G. E, Cannamela D. Lysis of thrombi produced by sodium morrhuate in the femoral vein of dogs by human plasmili (fibrinolysin). Ann. Surg. 139: 52-62 1954;
  • 16 Ambrus J. L, Back N, Mihayli E, Ambrus C. M. Quantitative method for the in vivo testing of fibrinolytic agents: effect of intravenous trypsin on radioactive thrombi and emboli. Circulât. Res. 4: 430-439 1956;
  • 17 Chandler A. B. In vitro thrombotic coagulation of blood; a method for producing a thrombus. Lab. Invest. 7: 110-114 1958;
  • 18 Poole J. C. A study of artificial thrombi produced by a modification of Chandler’s method. Quart. J. exp. Physiol. 44: 372-384 1959;
  • 19 Riddle J. M, Barnhart M. I. Ultrastructural study of fibrin dissolution via emigrated polymorphonuclear neutrophils. Amer. J. Pathol. 45: 805-823 1964;
  • 20 Gans H. Fibrinolytic properties of proteases derived from human, dog, and rabbit leukocytes. Thrombos. Diathes. haemorrh. (Stuttg.) 10: 379-389 1964;
  • 21 Opie E. L. Intracellular digestion. The enzymes and antienzymes concerned. Physiol. Rev. 5: 552-585 1922;
  • 22 Weiss C, Czarnetsky E. J. Proteolytic enzymes of monocytic and polymorphonuclear pleural exudates. Arch. Path. 20: 233-244 1945;
  • 23 Brennan M. J, Rebuck J. W, Talley R. W. Sequential observations in vivo of leukocytic interactions with autochthonous and homologous cancer cells in man. Blood 22: 817 1963;
  • 24 Carrel A. Growth promoting function of leucocytes. J. exp. Med. 36: 385-392 1922;
  • 25 Rebuck J. W, Crowley J. H. A method of studying leukocytic function in vivo. Ann. N. Y. Acad. Sci. 59: 757-805 1955;
  • 26 Riddle J. M, Barnhart M. I. The eosinophils as a source for Profibrinolysin in acute inflammation. Blood. (In press, 1964)
  • 27 Barnhart M. I. Cellular Fibrinogen. Thrombos. Diathes. haemorrh. (Stuttg.) 10 (Suppl. 13) 157-165 1964;
  • 28 Dible J. H. Organization and canalization in arterial thrombosis. J. Path. Bact. 75: 1-7 1958;
  • 29 Bloom W. Mammalian lymph in tissue culture. From lymphocyte to fibroblast. Arch. exp. Zellforsch. 5: 269-307 1928;
  • 30 Williams G. Experimental arterial thrombosis. J. Path. Bact. 69: 199-206 1955;
  • 31 Carrel A, Ebeling A. H. Pure cultures of large mononuclear leukocytes. J. exp. Med. 36: 365-378 1922;
  • 32 Carrel A, Ebeling A. H. The transformation of monocytes into fibroblasts through the action of Rous virus. J. exp. Med. 43: 461-468 1926;
  • 33 Fischer A. Sur la transformation in vitro des gros leucocytes mononucléaires en fìbroblastes. C. R. Soc. Biol. (Paris) 92: 109-112 1925;