Thromb Haemost 1958; 02(03/04): 205-217
DOI: 10.1055/s-0038-1656273
Originalarbeiten — Original Articles — Travaux Originaux
Schattauer GmbH

The Mode of Action of Thrombin

K Laki
1   National Institute of Arthritis and Metabolic Diseases and National Institute of Dental Research ; National Institutes of Health; Public Health Service; U.S. Department of Health, Education, and Welfare, Bethesda, Maryland
,
Jules A. Gladner
1   National Institute of Arthritis and Metabolic Diseases and National Institute of Dental Research ; National Institutes of Health; Public Health Service; U.S. Department of Health, Education, and Welfare, Bethesda, Maryland
,
J. E Folk*
1   National Institute of Arthritis and Metabolic Diseases and National Institute of Dental Research ; National Institutes of Health; Public Health Service; U.S. Department of Health, Education, and Welfare, Bethesda, Maryland
,
D. R Kominz
1   National Institute of Arthritis and Metabolic Diseases and National Institute of Dental Research ; National Institutes of Health; Public Health Service; U.S. Department of Health, Education, and Welfare, Bethesda, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
07 June 2018 (online)

Summary

The peptides liberated from fibrinogen by the action of thrombin have been isolated on modified cellulose adsorbents. These peptides have been characterized by sedimentation-diffusion measurements by quantitative amino acid analysis, and by C-terminal analysis. Both peptides were found to contain arginine as C-terminal amino acid. Thrombin thus splits specific arginyl-glycine bonds in the fibrinogen molecule. The specificity of thrombin is discussed in view of the finding that the active center of thrombin is similar to that of trypsin and chymotrypsin.

* National Institute of Dental Research.


 
  • References

  • 1 Laki K, and Mommaerts W. F. H. M. Transition of fibrinogen to fibrin as a two-step reaction. Nature (Lond.) 156: 664 1945;
  • 2 Sherry S, and Troll W. The action of thrombin on synthetic substrates. J. biol. Chem. 208: 95 1954;
  • 3 Laki K. The polymerization of proteins: the action of thrombin on fibrinogen. Arch. Biochem. Biophys. 32: 317 1951;
  • 4 Scheraga H. A, and Laskowski Jr. M. The fibrinogen-fibrin conversion. Advance Protein Chem. Vol. XII, 1957. Academic Press, Inc.; New York, N. Y.:
  • 5 Laki K, and Mihalyi E. Action of thrombin on iodinated fibrinogen. Nature (Lond.) 163: 66 1948;
  • 6 Mihalyi E, and Laki K. Iodination of fibrinogen. Arch. Biochem. Biophys. 38: 97 1952;
  • 7 Laki K, and Lorand L. On the solubility of fibrin clots. Science 108: 280 1948;
  • 8 Lorand L, and Jacobsen A. Studies on the polymerization of fibrin. The role of the globulin: fibrin stabilizing factor. J. biol. Chem. 230: 421 1958;
  • 9 Loewy A. G, Venziale C, and Forman M. Purification of the factor involved in the transformation of urea-insoluble fibrin. Biochim. Biophys. Acta 26: 670 1957;
  • 10 Mihalyi E. Properties of fibrin dissolved in urea solutions. Acta chem. scand. 4: 344 1956;
  • 11 Mihalyi E. Transformation of fibrinogen into fibrin. I. Electrochemical investigation of the activation process. J. biol. Chem. 209: 723 1953;
  • 12 Bailey K, Bellelheim F. R, Lorand L, and Middlebrook W. R. Action of thrombin on the clotting of fibrinogen. Nature (Lond.) 167: 233 1951;
  • 13 Blombäck B, and Yamashina I. The detection of N-terminal amino acids during the conversion of fibrinogen to fibrin. Acta chem. scand. 11: 194 1957;
  • 14 Laki K, and Kitzinger C. Heat changes during the clotting of fibrinogen. Nature (Lond.) 178: 985 1956;
  • 15 Kitzinger C, und Benzinger T. Wärmetönung der Adenosintriphosphorsäure-Spaltung. Z. Naturforsch. 108: 375 1955;
  • 16 Sturtevant J. M, Laskowski Jr. M, Donnelly T. H, and Scheraga H. A. Equilibria in the fibrinogen fibrin conversion. III. Heats of polymerization and clotting of fibrin monomer. J. Amer. chem. Soc. 77: 6168 1955;
  • 17 Lorand L. Fibrino-peptide: new aspects of the fibrinogen-fibrin transformation. Nature (Lond.) 167: 992 1951;
  • 18 Laki K. The action of thrombin on fibrinogen. Science 114: 2965 1951;
  • 19 Bettelheim F. R, and Bailey K. The products of the action of thrombin on fibrinogen. Biochim. Biophys. Acta 9: 578 1952;
  • 20 Gladner J. A, Folk J. E, and Laki K. Purification and structure studies of peptides released from fibrinogen by thrombin. Fed. Proc. 17: 299 1958;
  • 21 Peterson E. A, and Sober H. A. Chromatography of proteins. I. Cellulose ion exchange adsorbents. J. Amer. chem. Soc. 78: 751 1956;
  • 22 Folk J. E, Gladner J. A, and Laki K. A new pancreatic peptidase: carboxy-peptidase-B. Fed. Proc. 16: 181 1957;
  • 23 Folk J. E, and Gladner J. A. Carboxypeptidase-B. I. Purification of the zymogen and specificity of the enzyme. J. biol. Chem. 231: 379 1958;
  • 24 Gladner J. A, and Folk J. E. Carboxypeptidase-B. II. Mode of action on protein substrates and its application to carboxyl terminal group analysis. J. biol. Chem. 231: 393 1958;
  • 25 Gladner J. A, and Laki K. The inhibition of thrombin by diisopropylphosphoro-fluoridate. Arch. Biochem. Biophys. 62: 501 1956;
  • 26 Miller K. D, and van Vunakis H. The effect of diisopropylfluorophosphate on the proteinase and esterase activities of thrombin and on prothrombin and its activation. J. biol. Chem. 223: 227 1956;
  • 27 Hartley B. S, and Kilby B. A. The reaction of p-nitrophenyl esters with chymotrypsin and insulin. Biochem. J. 56: 288 1954;
  • 28 Oosterbaan R. A, and van Adrichem M. E. Isolation of acetyl peptides from acetylchymotrypsin. Biochim. Biophys. Acta 27: 218 1958;
  • 29 Schaffer N. K, Simet L, Harshman S, Engle R. R, and Drisco R. W. Phosphopeptides from acid-hydrolyzed P32-labeled diisopropylphosphoryl chymotrypsin. J. biol. Chem. 225: 197 1957;
  • 30 Oosterbaan R. A, Kunst P, van Rotterdam J, and Cohen J. A. The reaction of chymotrypsin and diisopropylphosphorofluoridate II. Biochim. Biophys. Acta 27: 556 1958;
  • 31 Gladner J. A, Laki K, and Stohiman F. Labeled DIP-thrombin. Biochim. Biophys. Acta 27: 218 1958;
  • 32 Gladner J. A, and Laki K. The active site of thrombin. J. Amer. chem. Soc. 80: 1263 1958;
  • 33 Schaffer N. K, Lang R. P, Simet L, and Drisko R. W. Phosphopeptides from acid-hydrolyzed P32-labeled isopropyl methylphosphorofluoridate-inactivated trypsin. J. biol. Chem. 230: 185 1958;
  • 34 Koshland D. E, and Erwin M. J. Enzyme catalysis and enzyme specificity-combination of amino acids at the active site of phosphoglucomutase. J. Amer. chem. Soc. 79: 2657 1957;
  • 35 Bettelheim F. R. The clotting of fibrinogen. II. Fractionation of peptide material liberated. Biochim. Biophys. Acta 19: 121 1956;
  • 36 Cunningham L. W. Proposed mechanism of action of hydrolytic enzymes. Science 125: 1145 1957;
  • 37 Westheimer F. H. Hypothesis for the mechanism of action of chymotrypsin. Proc. nat. Acad. Sci. (Wash.) 43: 969 1957;
  • 38 Saroff H. A. NIAMD personal communication, manuscript in preparation
  • 39 Josefsson L, and Edman P. Reversible inactivation of lysozyme due to N, O-peptidyl shift. Biochim. Biophys. Acta 25: 614 1957;
  • 40 Desnuelle P, et Casal A. Sur la moindre résistance à l’hydrolyse acide des liaisons peptidiques situées a coté d’une fonction hydroxyle. Biochim. Biophys. Acta 2: 64 1948;
  • 41 Bergmann M, und Miekely A. Umlagerungen peptidähnlicher Stoffe. 3. Mitteilung, Derivate desd, 1-serin. Über neuartige Anhydride des Glycylserin. Hoppe-Seyl. Z. physiol. Chem. 140: 128 1924;
  • 42 Welsh L. H. The constitution of acetylephedrine and acetylephedrine. J. Amer, chem. Soc. 69: 128 1947;
  • 43 Ware A. G, and Seegers W. H. Serum Ac-globulin; formation from plasma Acglobulin; role in blood coagulation; partial purification; properties; and quantitative determination. Amer. J. Physiol. 152: 567 1948;