Methods Inf Med 1998; 37(03): 239-246
DOI: 10.1055/s-0038-1634533
Original Article
Schattauer GmbH

Formalising and Acquiring Modelbased Hypertext in Medicine: an Integrative Approach

C. Spreckelsen
1   Institut für Medizinische Informatik, Universitätsklinikum der RWTH Aachen, Aachen, Germany
,
K. Spitzer
1   Institut für Medizinische Informatik, Universitätsklinikum der RWTH Aachen, Aachen, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
14 February 2018 (online)

Abstract

Combining a knowledge acquisition methodology with a powerful data model we present an approach to the acquisition, maintenance and browsing of scientific medical hypertext. The hypergraph-based data model supports the consistent treatment of cyclic data structures, the nesting of complex object and provides an elegant way of path declaration to represent time-dependent medical processes or large hypertext tours. It encourages a stepwise schema design and therefore supports a spiral-shaped acquisition process. We formally define view mechanisms on the basis of a rule-based query and modification language. The views enable a context-sensitive presentation of medical knowledge according to the informational needs of the physician.

Our approach has been applied to the implementation of an authoring and tutoring environment for a computer-based hypermedia reference book for cerebrovascular diseases (NeuroN). During the acquisition process the expressive power and flexibility of the representational formats have been evaluated.

 
  • REFERENCES

  • 1 Conklin J. Hypertext: an Introduction and Survey. IEEE Computer 1987; 20: 17-41.
  • 2 Cimino JJ, Elkin PL, Barnett GO. As We May Think: The concept space and medical hypertext. Comput Biomed Res 1992; 50: 238-63.
  • 3 Kuhlen R. Hypertext ein nichtlineares Medium zwischen Buch und Wissensbank. New York: Springer-Verlag; 1991
  • 4 Brusilovsky P. Adaptive hypermedia: an attempt to analyze and generalize. In: Brusilovsky P, Kommers P, Streitz N. eds. Multimedia, Hypermediam and Virtual Reality – Models, Systems, and Applications – First International Conference, MHVR '94, Moscow, Russia, September 1994, Selected Papers. Lecture Notes in Computer Science 1077. New York: Springer-Verlag; 1994: 288-305.
  • 5 Bürsner S, Schmidt G. Building Views on Conceptual Models for Structuring Domain Knowledge. In: Proceedings of KA W '95:- Ninth Knowledge Acquisition for Knowledge-Based Systems Workshop, SRDG Publication. Dept. of Computer Science, Univ. of Calgary; Calgary: March 1995 24-1 24-20.
  • 6 Spreckelsen C, Spitzer K. Modellbasiertes, dreidimensionales Browsing medizinischer Wissensbanken. In: Baur MP, Fimmers R, Blettner M. (eds.) Medizinische Informatik, Biometrie und Epidemiologie GMDS '96. München: MMV Medizin Verlag; 1997: 298-302.
  • 7 Musen MA. An overview of knowledge Acquisition. In: David JM, Krivine JP, Simmons R. Second Generation Expert Systems. New York: Springer-Verlag; 1993: 405-27.
  • 8 Bürsner S, Spitzer K, Wünnemann J, Nebe J, Haux R, Diener HC. NeuroN -Rechnerunterstütztes Neurologisches Nachschlagewerk. In: Pöppl SJ, Lipinski HG, Mansky T. (eds.) Medizinische Informatik: Ein integrierender Teil arztunterstützender Technologien. 38. Jahrestagung der GMDS, Lübeck September 1993. München: MMV; 1993: 15967.
  • 9 Bürsner S, Spreckelsen C, Nebe J, Spitzer K, Diener HC. Epistemologische Adäquatheit bei der Akquisition und formalen Repräsentation neurologischen Wissens. Informatik Biometrie und Epidemiologie in Medizin und Biologie 1995; 26 (3) 229-40.
  • 10 Simmons R, Davis R. The role of Knowledge and Representation in Problem Solving. In: Krivine JP, Simmons R. Second Generation Expert Systems. New York: Springer-Verlag; 1993: 27-45.
  • 11 Adams RD, Victor M. (eds.) Principles of Neurology. New York: McGraw-Hill; 1985
  • 12 Poulovassilis A, Levene M. A Nested-Graph Model for the Representation and Manipulation of Complex Objects. ACM Transactions on Information System 1994; 12 (1) 35-68.
  • 13 Hild X, Poulovassilis A. Implementing Hyperlog, a Graph-Based Database Language. Journal of Visual Languages and Computing 1996; 7: 267-89.
  • 14 Wagner C. Komplexitätsanalyse und effiziente Operationalisierung eines graphenbasierten Wissensrepräsentationsformats und der dazugehörigen Abfragesprache, Zulassungsarbeit in Mathematik. Universität Heidelberg, Fakultät für Mathematik: 1996
  • 15 Schnupp P. Hypertext. München: Oldenbourg; 1992
  • 16 Ullman JD. Principles of Database Systems. Rockville: Computer Science Press, Inc.; 1982
  • 17 Dos Santos CS. Design and Implementation of Object-Oriented Views. In: Revell N, Tjoa AM. (eds.) Database and expert systems applications: proceedings, 6th International Conference, DEXA '95. London, United Kingdom: September 4-8 1995. Lecture notes in computer science 978. Berlin: Springer; 1995
  • 18 Clitherow P, Rieken D, Muller M. VISAR. A system for inference and navigation of hypertext. In: ACM-Hypertext '89 Proceedings. 1989: 292-304.
  • 19 Travers M. A visual presentation for knowledge structures. In: ACM-Hypertext '89 Proceedings. 1989: 147-58.
  • 20 DeRosis F, De Carolis B, Pizzutilo S. User tailored hypermedia explanations. In: INTERCHI '93 Adjunct proceedings, Amsterdam. 1993: 169-70.
  • 21 Brusilovsky P, Pesin L. ISIS-Tutor: An adaptive hypertext learning environment. Proc. of Japanese-CIS Workshop on knowledge-based software engineering. Tokyo: 1994
  • 22 Hohl H, Böcker HD, Gunzenhäuser R. HYPADAPTER. An Adaptive Hypertext System for Exploratory Learning and Programming. User Modeling and User-Adapted Interaction 1996; 6 (2-3) 131-55.
  • 23 Levene M, Poulovassilis A. An object-oriented data model formalized through hypergraphs. Data and Knowledge Engineering 1991; 6 (3) 205-24.
  • 24 Weiss SM, Kulikowski CA, Amarel S, Safir A. A model-based method for computer-aided medical decision-making. Artificial Intelligence 1978; 11: 145-72.
  • 25 Müller R, Thews O, Rohrbach C, Sergl M, Pommering K. A Graph-grammar Approach to Represent Causal, Temporal and Other Contexts in an Oncological Patient Record. Meth Inform Med 1996; 35: 127-41.
  • 26 Kuper GM, Vardi MY. The Logical Data Model. ACM Transactions on Database Systems 1993; 18 (3) 379-413.
  • 27 Tompa FW. A data model for flexible hypertext database systems. ACM Transactions of Information Systems 1989; 7 (1) 85-100.
  • 28 Sowa JF. Relating Diagramms to Logic. In: Mineau GW, Moulin B, Sowa JF. (eds.) Conceptual Graphs for knowledge Representation. First International Conference on Conceptual Structures, ICCS '93, Quebec City, Canada, August 1993, Proceedings. Lecture Notes in Artificial Intelligence 699. New York: Springer-Verlag; 1993: 1-35.
  • 29 Lanzola G, Quaglini S, Stefaneiii M. Knowledge-Acquisition Tools for Medical Knowledge-Based Systems. Meth Inform Med 1995; 34: 25-39.
  • 30 Rector A. Compositional Models of Medical Concepts: Towards Re-usable Application-Independent Medical Terminologies. In: Barahona P, Christensen JP. Knowledge and Decisions in Health Telematics. IOS Press; 1994: 109-14.
  • 31 Humphreys BL, Lindberg DAB. The UMLS project: making the conceptual connection between users and the information they need. Bulletin of the Medical Library Association 1993; 81: 170-7.