Nervenheilkunde 2013; 32(12): 916-925
DOI: 10.1055/s-0038-1633380
Botulinumtoxin
Schattauer GmbH

Zerebralparesen und Botulinumtoxin

Reality Check 2013Cerebral palsy and botulinum toxinreality check 2013
A. S. Schroeder
1   Abteilung für Pädiatrische Neurologie, Entwicklungsneurologie und Sozialpädiatrie, integriertes Sozialpädiatrisches Zentrum (iSPZ München) im Dr. von Haunerschen Kinderspital der Ludwig-Maximilians-Universität München
,
S. Berweck
2   Schön Klinik Vogtareuth, Klinik für Neuropädiatrie und neurologische Rehabilitation
,
F Heinen
1   Abteilung für Pädiatrische Neurologie, Entwicklungsneurologie und Sozialpädiatrie, integriertes Sozialpädiatrisches Zentrum (iSPZ München) im Dr. von Haunerschen Kinderspital der Ludwig-Maximilians-Universität München
› Author Affiliations
Further Information

Publication History

eingegangen am: 15 July 2013

angenommen am: 17 July 2013

Publication Date:
02 February 2018 (online)

Zusammenfassung

Seit dem Erscheinen der interdisziplinären deutschen und europäischen Konsensus zum Thema Botulinumtoxin (BoNT) für Kinder mit Zerebraparese (CP) hat sich das fächerübergreifende, integrative Behandlungskonzept zur Förderung der motorischen Entwicklung zusehends etabliert. Neben der kondensierten tabellarischen Darstellung und Aktualisierung der Evidenz zu den wichtigsten Aspekten der Therapie, wurde 2009 eine grafische Darstellung der Therapieoptionen (Therapiekurven CP-Motorik) eingeführt. Diese grafische Darstellung der Therapieoptionen für die Förderung der motorischen Fertigkeiten bei Kindern mit CP ermöglicht eine strukturierte Beratung zu den Therapieoptionen und hat im Alltag seine Anwendertauglichkeit im Dialog mit den Familien bewiesen.

Insbesondere bei drei der zehn Domänen aus den Konsensus zur Behandlung mit BoNT haben sich neue Erkenntnisse ergeben: “therapeutische Anwendung/Versorgungsqualität”, “Sicherheit”, “Effekte der Botulinumtoxintherapie im Muskel”. Dieser Beitrag aus der Neuropädiatrie soll diese Punkte aus der klinischen Anwenderperspektive überprüfen und aus dem Blickwinkel der neu gewonnenen Erkenntnisse beleuchten.

Summary

Since the publication of the interdisciplinary German and European Consensus on Botulinum Toxin for Children with Cerebral Palsy, the integrative management to facilitate motor development has been further implemented into clinical care. In 2009 the updated consensus were published with an updated tabulated evidence report and for the first time including a graphical visualisation of the available treatment options for children across age and different severity levels of motor impairment (CPGraph treatment modalities gross motor function). This graphical framework was meant to allow the multidisciplinary team to structure the counselling of patients, parents and additional involved specialists. Since then, it has proven to be very helpful in daily routine.

Within the last years new insights have evolved especially in three out of ten domains from the tabulated evidence consensus: “standards and quality of care”, “safety”, “effects of botulinum toxin within the muscle”. This report will focus on these aspects by interpreting the recently gained knowledge from a clinical perspective.

 
  • Literatur

  • 1 Heinen F. et al. European consensus table 2006 on botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol 2006; 10 (5–6): 215-25.
  • 2 Heinen F. et al. Botulinumtoxin für Kinder mit Zerebralparesen: 10-Punkte-Tabelle, 2007. Ein interdisziplinärer deutscher Konsensus. Monatss Kinderheilkunde 2007; 155 (06) 537-543.
  • 3 Heinen F. et al. Grafikgestützter Konsensus für die Behandlung von Bewegungsstörungen bei Kindern mit bilateralen spastischen Zerebralparesen (BS)-CP. Monatss Kinderheilkunde. 2009 Online 15. Juli 2009.
  • 4 Heinen F. et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol 2010; 14 (01) 45-66.
  • 5 Papavasiliou AS. et al. Assessment of families of children with cerebral palsy of the “CP-graph on treatment modalities for gross motor function”. Europ J Paed Neurol 2012; 16 (06) 762-3.
  • 6 Simpson DM. et al. Assessment: Botulinum neurotoxin for the treatment of movement disorders (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2008; 70 (19) 1699-706.
  • 7 Simpson DM. et al. Assessment: Botulinum neurotoxin for the treatment of spasticity (an evidencebased review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2008; 70 (19) 1691-8.
  • 8 Fehlings D. et al. Botulinum toxin assessment, intervention and follow-up for paediatric upper limb hypertonicity: international consensus statement. Eur J Neurol 2010; 17 Suppl 2: 38-56.
  • 9 Wissel J. et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J Rehabil Med 2009; 41 (01) 13-25.
  • 10 Naumann M. et al. Assessment: Botulinum neurotoxin in the treatment of autonomic disorders and pain (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2008; 70 (19) 1707-14.
  • 11 De Boulle K. et al. Treating glabellar lines with botulinum toxin type A-hemagglutinin complex: a review of the science, the clinical data, and patient satisfaction. Clin Interv Aging 2010; 05: 101-18.
  • 12 Palisano J. et al. Family needs of parents of children and youth with cerebral palsy. Child: care, health and development 2010; 36 (01) 85-92.
  • 13 Buran CF. et al. Family needs assessment in cerebral palsy clinic. J Special Ped Nur 2009; 14 (02) 86-93.
  • 14 SCPE, Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol 2000; 42 (12) 816-24.
  • 15 Krageloh-Mann I, Horber V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Dev Med Child Neurol 2007; 49 (02) 144-51.
  • 16 Rosenbaum PL. et al. Prognosis for gross motor function in cerebral palsy: creation of motor development curves. Jama 2002; 288 (11) 1357-63.
  • 17 Palisano R. et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39 (04) 214-23.
  • 18 Hanna SE. et al. Reference curves for the Gross Motor Function Measure: percentiles for clinical description and tracking over time among children with cerebral palsy. Phys Ther 2008; 88 (05) 596-607.
  • 19 Hanna SE. et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol 2009; 51 (04) 295-302.
  • 20 Zier JL. et al. Effectiveness of sedation using nitrous oxide compared with enteral midazolam for botulinum toxin A injections in children. Dev Med Child Neurol 2008; 50 (11) 854-8.
  • 21 Kumar R, Sneade C, Littler K. Effectiveness of sedation using nitrous oxide compared with enteral midazolam for botulinum toxin A injections in children. Dev Med Child Neurol 2009; 51 (10) 838-9.
  • 22 Brochard S. et al. Determining the technical and clinical factors associated with pain for children undergoing botulinum toxin injections under nitrous oxide and anesthetic cream. Eur J Paed Neurol 2011; 15 (04) 310-5.
  • 23 Fehlings D. et al. Botulinum toxin-A use in paediatric hypertonia: Canadian practice patterns. The Canadian journal of neurological sciences. J Can Sci Neurol 2012; 39 (04) 508-15.
  • 24 Forrester M. et al. Conscious sedation or general anaesthetic for intramuscular botulinum toxin injections in children – a two centre cross-sectional prospective audit. Eur J Paed Neurol 2012; 16 (02) 215-7.
  • 25 Neuhauser C. et al. Analgesia and sedation for painful interventions in children and adolescents. Deutsches Arzteblatt international 2010; 107 (14) 241-7.
  • 26 Philippi-Hoehne C. et al. Analgosedierung für diagnostische und therapeutische Maßnahmen im Kindesalter. Anaesth Intensivmed 2010; 51: S603-S614.
  • 27 Chin TY. et al. Accuracy of intramuscular injection of botulinum toxin A in juvenile cerebral palsy: a comparison between manual needle placement and placement guided by electrical stimulation. J Pediatr Orthop 2005; 25 (03) 286-91.
  • 28 Yang EJ. et al. Accuracy of manual needle placement for gastrocnemius muscle in children with cerebral palsy checked against ultrasonography. Arch Phys Med Rehabil 2009; 90 (05) 741-4.
  • 29 Molloy FM. et al. Accuracy of muscle localization without EMG: implications for treatment of limb dystonia. Neurology 2002; 58 (05) 805-807.
  • 30 Henzel MK. et al. Comparison of surface and ultrasound localization to identify forearm flexor muscles for botulinum toxin injections. Pys Med Rehabil 2010; 02 (07) 642-6.
  • 31 Picelli A. et al. Accuracy of botulinum toxin type A injection into the gastrocnemius muscle of adults with spastic equinus: manual needle placement and electrical stimulation guidance compared using ultrasonography. Phys Rehabil Med 2012; 44 (05) 450-2.
  • 32 Schnitzler A. et al. Manual needle placement: accuracy of botulinum toxin A injections. Muscle & Nerve 2012; 46 (04) 531-4.
  • 33 Berweck S. et al. Sonography-guided injection of botulinum toxin A in children with cerebral palsy. Neuropediatrics 2002; 33 (04) 221-223.
  • 34 Berweck S. et al. Sonography-guided injection of botulinum toxin in children with cerebral palsy. Lancet 2004; 363 (9404): 249-50.
  • 35 Berweck S, Wissel J. Sonographic imaging for guiding botulinum toxin injections in limb muscles. ACNR 2004; 04: 28-31.
  • 36 Westhoff B. et al. Ultrasound-guided botulinum toxin injection technique for the iliopsoas muscle. Dev Med Child Neurol 2003; 45 (12) 829-32.
  • 37 Schroeder AS. et al. Botulinum toxin treatment of children with cerebral palsy – a short review of different injection techniques. Neurotox Res 2006; 09 (2–3): 189-96.
  • 38 Picelli A. et al. Is spastic muscle echo intensity related to the response to botulinum toxin type a in patients with stroke? A cohort study. Arch Phys Med Rehabil 2012; 93 (07) 1253-8.
  • 39 Harle P. et al. (Ultrasound-guided puncture: an inexpensive and effective learning model). Zeitschrift für Rheumatologie 2011; 70 (06) 525-9.
  • 40 Fietzek UM. et al. Split-screen video demonstration of sonography-guided muscle identification and injection of botulinum toxin. Mov Disord 2010; 25 (13) 2225-8.
  • 41 Alter KE. High-frequency ultrasound guidance for neurotoxin injections. Physical medicine and rehabilitation clinics of North America 2010; 21 (03) 607-30.
  • 42 Py AG. et al. Evaluation of the effectiveness of botulinum toxin injections in the lower limb muscles of children with cerebral palsy. Preliminary prospective study of the advantages of ultrasound guidance. Ann Phys Rehabil Med 2009; 52 (03) 215-23.
  • 43 Kwon JY, Hwang HJ, Kim JS. Botulinum toxin a injection into calf muscles for treatment of spastic equinus in cerebral palsy: a controlled trial comparing sonography and electric stimulationguided injection techniques: a preliminary report. Am J Phys Med Rehabil 2010; 89 (04) 279-86.
  • 44 Picelli A. et al. Botulinum toxin type A injection into the gastrocnemius muscle for spastic equinus in adults with stroke: a randomized controlled trial comparing manual needle placement, electrical stimulation and ultrasonography-guided injection techniques. Am J Phys Med Rehabil 2012; 91 (11) 957-64.
  • 45 Hong JS. et al. Elimination of dysphagia using ultrasound guidance for botulinum toxin injections in cervical dystonia. Muscle & Nerve 2012; 46 (04) 535-9.
  • 46 Di Lorenzo L. et al. Does ultrasound guidance facilitate facial botulinum injections?. Headache 2013; 53 (02) 382-3.
  • 47 Lim EC, Quek AM, Seet RC. Accurate targeting of botulinum toxin injections: how to and why. Parkinsonism & related disorders 2011; 17 Suppl 1: S34-9.
  • 48 Naumann M, Jankovic J. Safety of botulinum toxin type A: a systematic review and meta-analysis. Curr Med Res Opin 2004; 20 (07) 981-90.
  • 49 Naumann M. et al. Safety and efficacy of botulinum toxin type A following long-term use. Eur J Neurol 2006; 13 Suppl 4: 35-40.
  • 50 Albavera-Hernandez C, Rodriguez JM, Idrovo AM. Safety of botulinum toxin type A among children with spasticity secondary to cerebral palsy: a systematic review of randomized clinical trials. Clin Rehabil 2009; 23 (05) 394-407.
  • 51 Naidu K. et al. Systemic adverse events following botulinum toxin A therapy in children with cerebral palsy. Dev Med Child Neurol 2010; 52 (02) 139-44.
  • 52 Langdon K. et al. Adverse events following botulinum toxin type A treatment in children with cerebral palsy. Dev Med Child Neurol 2010; 52 (10) 972-3.
  • 53 O’Flaherty SJ. et al. Adverse events and health status following botulinum toxin type A injections in children with cerebral palsy. Dev Med Child Neurol 2011; 53 (02) 125-30.
  • 54 Berweck S. et al. Safety of Botulinum Toxin treatment in children with Cerebral Palsy in correlation to GMFCS level. Neuropediatrics. 2008 DOI: 10.1055/s-0029-1215840.
  • 55 Tedroff K. et al. Botulinum toxin A treatment in toddlers with cerebral palsy. Acta paediatrica 2010; 99 (08) 1156-62.
  • 56 Pascual-Pascual S, Pascual-Castroviejo I. Safety of botulinum toxin type A in children younger than 2 years. Eur J Paediatr Neurol 2008; 13: 511-5.
  • 57 Dong M. et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006; 312 (5773): 592-6.
  • 58 de Paiva A. et al. Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci 1999; 96 (06) 3200-5.
  • 59 Hassan SM, Jennekens FG, Veldman H. Botulinum toxin-induced myopathy in the rat. Brain 1995; 118 (Pt 2): 533-45.
  • 60 Fortuna R. et al. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox). J Biomechanics 2011; 44 (01) 39-44.
  • 61 Borodic GE, Ferrante R. Effects of repeated botulinum toxin injections on orbicularis oculi muscle. J Clin Neuro-Ophthalmology 1992; 12 (02) 121-7.
  • 62 Schröder JM. et al. Spasmodic torticollis: severe compression neuropathy in rami dorsales of cervical nerves C1–6. Acta Neuropathol (Berl) 1992; 84 (04) 416-24.
  • 63 Schroeder AS. et al. Botulinumtoxin im Muskel – in vivo Untersuchungen über zwei Jahre, bestätigt durch histopathologische Untersuchung des Muskels. in Focus Cerebralparesen 1. Interdiszilinärer Kongress Neuropädiatrie, Sozialpädiatrie, Kinderorthopädie. 2009 Freiburg im Breisgau.
  • 64 Schroeder AS. et al. Muscle biopsy substantiates long-term MRI alterations one year after a single dose of botulinum toxin injected into the lateral gastrocnemius muscle of healthy volunteers. Mov Disord 2009; 24 (10) 1494-503.
  • 65 Wohlfarth K. et al. Neurophysiological doubleblind trial of a botulinum neurotoxin type a free of complexing proteins. Clin Neuropharmacol 2007; 30 (02) 86-94.
  • 66 Schroeder AS. et al. How doctors think – and treat with botulinum toxin. Dev Med Child Neurol 2010; 53: 179-86.
  • 67 Koerte IK. et al. Muscle atrophy beyond the clinical effect after a single dose of onabotulinumtoxin A injected in the procerus muscle: a study with magnetic resonance imaging. Dermatologic surgery 2013; 39 (05) 761-5.
  • 68 Schroeder AS. et al. Significant reduction of muscle diameter after Botulinum Toxin injection in gastrocnemius muscle in children with cerebral palsy. In: Annual Meeting of the German Society of Pediatric Neurology. Erlangen: 2005
  • 69 Kwon DR. et al. Spastic cerebral palsy in children: dynamic sonoelastographic findings of medial gastrocnemius. Radiology 2012; 263 (03) 794-801.
  • 70 World Health Organisation, W. International Classification of Functioning, Disability and Health, Children & Youth version (WHO 2005). 2005 (cited 2012 September 27); Available from: http://apps.who.int/classifications/icfbrowser/.