Nervenheilkunde 2013; 32(10): 755-761
DOI: 10.1055/s-0038-1633368
Demenz
Schattauer GmbH

Krankheitsmodifizierende Behandlungen

Ansätze und Studien zur ²-AmyloidhypotheseDisease-modifying therapies
R. Dodel
1   Neurologische Klinik, Philipps-Universität Marburg
,
F. Jessen
2   Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Bonn
› Author Affiliations
Further Information

Publication History

eingegangen am: 20 June 2013

angenommen am: 26 June 2013

Publication Date:
02 February 2018 (online)

Zusammenfassung

Die Demenz vom Alzheimer-Typ ist die häufigste neurodegenerative Erkrankung und mehr als 15 Millionen Menschen sind weltweit betroffen. Die Erkrankung ist klinisch charakterisiert durch eine progressive Gedächtnisstörung, kognitiven Abbau und Einbußen in den Aktivitäten des täglichen Lebens; histopathologisch ist die Erkrankung definiert durch den Nachweis von ²-Amyloidplaques (A²), die aus aggregiertem A²-Peptiden bestehen und neurofibrillären Bündeln, die aus hyperphophoryliertem Tau-Protein entstehen. Die zur Testung gelangenden Therapieansätze fußen überwiegend auf diesen beiden Mechanismen. Insbesondere Therapieansätze basierend auf der Amyloidkaskaden-Hypothese, wie ³-Sekretaseinhibitoren, Inhibitoren der ²-Sekretase und immuntherapeutische Ansätze standen in den letzten Jahren im Mittelpunkt der Entwicklung. Ziel dieses Artikels ist es, die in der klinischen Entwicklung befindlichen krankheitsmodifizierenden Therapieansätze, die auf der Amyloidkaskaden-Hypothese beruhen, kurz darzustellen.

Summary

Alzheimer’s disease is the most common neurodegenerative disease and more than 15 million people worldwide are affected. The disease is clinically characterized by a progressive memory impairment, cognitive decline and loss of activities of daily living. The disease is histopathologically defined by the accumulation of ²-amyloid and neurofibrillary tangles consisting of hyperphosphorylated tau protein. Current therapeutic approaches under development are mainly based on these two mechanisms. In particular, therapeutic approaches based on the amyloid cascade hypothesis, such as secretase inhibitors, immunotherapeutic approaches were in the focus of development in the last decade. The aim of this article is to review disease-modifying therapies based on the amyloid cascade hypothesis, which are currently in clinical development.

 
  • Literatur

  • 1 Maier W, Jessen F. Evidence-based standards for care of patients with dementia. The interdisciplinary S3 guideline for dementia. Nervenarzt 2010; 81: 795.
  • 2 Mani RB. The evaluation of disease modifying therapies in Alzheimer’s disease: a regulatory viewpoint. Statistics in medicine 2004; 23: 305-14.
  • 3 Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 2007; 69: 1622-34.
  • 4 Sampaio C. Alzheimer disease: disease modifying trials; where are we? Where do we need to go? A reflective paper. The journal of nutrition, health & aging 2006; 10: 113-5.
  • 5 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry Alzheimer’s Disease: Developing Drugs for the Treatment of Early Stage Disease (Draft). wwwfdagov/downloads/Drugs/GuidanceCoplianceRegulatoryInformation/Guidances/UCM338287pdf.2013.
  • 6 Reitz C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. International journal of Alzheimer’s disease 2012; 369: 808.
  • 7 Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256: 184-5.
  • 8 Snow A. et al. Exebryl-1: a novel small molecule currently in human clinical trials as a diseasemodifying drug for the treatment of Alzheimer’s disease. Alzheimer’s & Dementia 2009; 05: 418.
  • 9 Desire L. et al. Blood transcriptomic biomarkers of Alzheimer’s disease patients treated with EHT 0202. JAD 2013; 34: 469-83.
  • 10 Vellas B. et al. EHT0202 in Alzheimer’s disease: a 3-month, randomized, placebo-controlled, double-blind study. Current Alzheimer research 2011; 08: 203-12.
  • 11 Ghosh AK, Brindisi M, Tang J. Developing betasecretase inhibitors for treatment of Alzheimer’s disease. Journal of neurochemistry 2012; 120 Suppl 1: 71-83.
  • 12 Schenk D, Basi GS, Pangalos MN. Treatment strategies targeting amyloid beta-protein. Cold Spring Harbor perspectives in medicine 2012; 02: a006387.
  • 13 Henley DB, May PC, Dean RA, Siemers ER. Development of semagacestat (LY450139), a functional gamma-secretase inhibitor, for the treatment of Alzheimer’s disease. Expert opinion on pharmacotherapy 2009; 10: 1657-64.
  • 14 Schor NF. What the halted phase III gamma-secretase inhibitor trial may (or may not) be telling us. Annals of neurology 2011; 69: 237-9.
  • 15 Green RC. et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 2009; 302: 2557-64.
  • 16 Coric V. et al. Safety and tolerability of the gammasecretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Archives of neurology 2012; 69: 1430-40.
  • 17 Dockens R. et al. A placebo-controlled, multiple ascending dose study to evaluate the safety, pharmacokinetics and pharmacodynamics of avagacestat (BMS-708163) in healthy young and elderly subjects. Clinical pharmacokinetics 2012; 51: 681-93.
  • 18 Tong G. et al. Effects of single doses of avagacestat (BMS-708163) on cerebrospinal fluid Abeta levels in healthy young men. Clinical drug investigation 2012; 32: 761-9.
  • 19 Tong G. et al. Multicenter, randomized, doubleblind, placebo-controlled, single-ascending dose study of the oral gamma-secretase inhibitor BMS-708163 (Avagacestat): tolerability profile, pharmacokinetic parameters, and pharmacodynamic markers. Clinical therapeutics 2012; 34: 654-67.
  • 20 Martone RL. et al. Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein gamma-secretase for the treatment of Alzheimer’s disease. The Journal of pharmacology and experimental therapeutics 2009; 331: 598-608.
  • 21 Grossman H. et al. NIC5-15 as a treatment for Alzheimer’s: safety, pharmacokinetics and clinical variables. Alzheimers Dement 2009; 05 (4 suppl 1): P259.
  • 22 Grossmann H. et al. NIC5-15 as a treatment for Alzheimer’s: safety, beta-amyloid and clinical variables. www.delay-ad.org/images/NIC5–15_ICAD_2009_poster.pdf.
  • 23 Ma K, Thomason LA, McLaurin J. scyllo-Inositol, preclinical, and clinical data for Alzheimer’s disease. Advances in pharmacology 2012; 64: 177-212.
  • 24 Salloway S. et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 2011; 77: 1253-62.
  • 25 Zhang T, Zhang J, Derreumaux P, Mu Y. Molecular mechanism of the inhibition of EGCG on the Alzheimer Abeta(1–42) dimer. The journal of physical chemistry B 2013; 117: 3993-4002.
  • 26 Schenk D. et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400: 173-7.
  • 27 Bayer AJ. et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005; 64: 94-101.
  • 28 Tayeb HO, Murray ED, Price BH, Tarazi FI. Bapineuzumab and solanezumab for Alzheimer’s disease: is the ‘amyloid cascade hypothesis’ still alive?. Expert opinion on biological therapy 2013; 13: 1075-84.
  • 29 Dodel R. et al. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet neurology 2013; 12: 233-43.
  • 30 Baxter. Press Release. May 2013. wwwbaxtercom/press_room/press_releases/2013/05_07_13_gap_studyhtml.2013.
  • 31 Burstein AH. et al. Safety and pharmacology of ponezumab (PF-04360365) after a single 10-minute intravenous infusion in subjects with mild to moderate Alzheimer disease. Clinical neuropharmacology 2013; 36: 8-13.
  • 32 Landen JW. et al. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clinical neuropharmacology 2013; 36: 14-23.
  • 33 Adolfsson O. et al. An effector-reduced anti-betaamyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. Journal of Neuroscience 2012; 32: 9677-89.
  • 34 Delrieu J, Ousset PJ, Vellas B. Gantenerumab for the treatment of Alzheimer’s disease. Expert opinion on biological therapy 2012; 12: 1077-86.
  • 35 Dunstan R. et al. Molecular characterization and preclinical efficacy. Alzheimer’s & dementia. J of the Alzheimer’s Association 2011; 06: S457.
  • 36 Winblad B. et al. Safety, tolerability, and antibody response of active Abeta immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, firstin-human study. Lancet Neurology 2012; 11: 597-604.
  • 37 Muhs A. et al. Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. PNAS 2007; 104: 9810-5.
  • 38 Rosenmann H. Immunotherapy for targeting tau pathology in Alzheimer’s disease and tauopathies. Current Alzheimer research 2013; 10: 217-28.
  • 39 Moreth J, Mavoungou C, Schindowski K. Passive anti-amyloid immunotherapy in Alzheimer’s disease: What are the most promising targets?. Immunity & Ageing 2013; 10: 18.
  • 40 Anand A, Banik A, Thakur K, Masters CL. The animal models of dementia and Alzheimer’s disease for pre-clinical testing and clinical translation. Current Alzheimer research 2012; 09: 1010-29.
  • 41 Roskam S, Neff F, Schwarting R, Bacher M, Dodel R. APP transgenic mice: the effect of active and passive immunotherapy in cognitive tasks. Neuroscience and biobehavioral reviews 2010; 34: 487-99.
  • 42 Hampel H, Lista S, Khachaturian ZS. Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement 2012; 08: 312-36.
  • 43 Reiman EM. et al. Considerations in the design of clinical trials for cognitive aging. The journals of gerontology Series A, Biological sciences and medical sciences 2012; 67: 766-72.
  • 44 Schultz T. et al. A novel subject synchronization clinical trial design for Alzheimer’s disease. JAD 2012; 31: 507-16.
  • 45 Sperling RA, Jack CR, Aisen PS. Testing the right target and right drug at the right stage. Science Translational Medicine 2011; 03: 111-33.
  • 46 Mullard A. Sting of Alzheimer’s failures offset by upcoming prevention trials. Nature reviews Drug discovery 2012; 11: 657-60.
  • 47 Delrieu J, Ousset PJ, Caillaud C, Vellas B. Clinical trials in Alzheimer’s disease’: immunotherapy approaches. Journal of Neurochemistry 2012; 120 Suppl 1: 186-93.
  • 48 Jack CR. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology 2010; 09: 119-28.
  • 49 Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 08 (02) 101-12.