Osteologie 2013; 22(03): 196-199
DOI: 10.1055/s-0038-1630126
Osteologische Biomaterialien
Schattauer GmbH

Biodegradable Metalle für osteologische Anwendungen

Biodegradable metals for treatment of osteologic diseases
F. Witte
1   Julius Wolff Institut und Zentrum für Muskuloskeletale Chirurgie, Berlin-Brandenburg Zentrum für Regenerative Therapien, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

eingereicht: 30 May 2013

angenommen: 17 July 2013

Publication Date:
30 January 2018 (online)

Zusammenfassung

In der Medizin beschäftigt sich die Osteologie im klinischen Feld zwischen Orthopädie und Endokrinologie mit dem physiologischen Aufbau der Knochen sowie den Prozessen des Knochenstoffwechsels – bzw. dessen Erkrankungen. Die in diesem klinischen Zusammenhang auftretenden Frakturen und notwendigen Osteotomien sollten möglichst mechanisch stabil versorgt sein und die Knochenheilung sollte möglichst gut gefördert werden. Hierfür stehen heute zahlreiche Implantate auf Metallbasis zur Verfügung. In diesem Zusammenhang stellt sich nun die Frage, ob es “osteologische” metallische Implantate gibt, die in den physiologischen Aufbau des Knochens eingreifen und die regenerativen Prozesse des Knochenstoffwechsels beeinflussen. In diesem Kontext werden abbaubare Implantate auf Metallbasis, die “biodegradablen Metalle”, besprochen und deren Wechselwirkung mit dem umliegenden Knochen und den Knochenstoffwechselprozessen diskutiert.

Summary

Clinical osteology is focussing on physiological and pathological processes in bone. In this context, bone fractures need special attention and require fast regeneration to protect the diseased patient. Special implants and drugs are available for these specific requirements. However, recently investigated biodegradable metal implants might combine both aspects by offering high initial mechanical support and the release of bioactive metal ions. The effect of these metal ions on the healing bone needs to be reviewed critically and can maybe therapeutically used. This review is briefly introducing the exciting field of biodegradable metals and discusses how the released metal ions are interacting with the surrounding bone.

 
  • Literatur

  • 1 Wikipedia. Osteologie. 2013
  • 2 Schuster J. Praktische Chirurgie, Band 90. Die Metallose: Osteosynthese-Metalle, Korrosion, klinisches Bild der Metallose, Untersuchungsmöglichkeiten, Metallbrüche. Stuttgart: Enke; 1975
  • 3 Witte F, Hort N, Vogt C. et al. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science 2008; 12 (5-6) 63-72.
  • 4 Witte F. The history of biodegradable magnesium implants: a review. Acta biomaterialia 2010; 6 (5) 1680-1692. [Epub Feb 23, 2010].
  • 5 Witte F, Kaese V, Haferkamp H. et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26 (17) 3557-3563.
  • 6 Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling. Journal of biomedical materials research Part A. 2007; 81 (3) 757-765. [Epub Mar 29, 2007].
  • 7 Janning C, Willbold E, Vogt C. et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta biomaterialia 2010; 6 (5) 1861-1868. [Epub Dec 29, 2009].
  • 8 Bobe K, Willbold E, Morgenthal I. et al. In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta biomaterialia. 2013 [Epub Apr 2, 2013].
  • 9 Mantovani D, Witte F. The attraction of a lightweight metal with mechanical properties suitable for many applications brought a renewed focus on magnesium alloys in the automotive and aerospace industries. Acta biomaterialia 2010; 6 (5) 1679. [Epub Feb 24, 2010].
  • 10 Moravej M, Prima F, Fiset M, Mantovani D. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. Acta biomaterialia 2010; 6 (5) 1726-1735. [Epub Jan 21, 2010].
  • 11 Wegener B, Sievers B, Utzschneider S. et al. Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2011; 176 (20) 1789-1796.
  • 12 Bowen PK, Drelich J, Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Advanced Materials 2013; 25 (18) 2577-2582.
  • 13 Wang YB, Xie XH, Li HF. et al. Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta biomaterialia 2011; 7 (8) 3196-3208. [Epub May 17, 2011].
  • 14 Avioli LV, Krane SM. Metabolic Bone Disease and clinically related disorders. Philadelphia: W. B. Saunders Company; 1990
  • 15 Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008; 29 (10) 1329-1344.
  • 16 Zhang S, Zhang X, Zhao C. et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia 2010; 6 (2) 626-640.
  • 17 Xu LP, Yu GN, Zhang E. et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. Journal of Biomedical Materials Research Part A 2007; 83A (3) 703-711.
  • 18 Remennik S, Bartsch I, Willbold E. et al. New, fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants. Materials Science and Engineering B 2011; 176 (20) 1653-1659.
  • 19 Gu XN, Xie XH, Li N. et al. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomaterialia 2012; 8 (6) 2360-2374.
  • 20 Peng Q, Huang Y, Zhou L. et al. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials 2010; 31 (3) 398-403.
  • 21 Hort N, Huang Y, Fechner D. et al. Magnesium alloys as implant materials – Principles of property design for Mg-RE alloys. Acta Biomaterialia 2010; 6 (5) 1714-1725.
  • 22 Witte F, Fischer J, Nellesen J. et al. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomaterialia 2010; 6 (5) 1792-1799. [Epub Oct 14, 2009].
  • 23 Fowler BA. Handbook of Toxicology of Metals. Academic Press; 2007
  • 24 Yusa K, Yamamoto O, Fukuda M. et al. In vitro prominent bone regeneration by release zinc ion from Zn-modified implant. Biochemical and biophysical research communications 2011; 412 (2) 273-278. [Epub Aug 9, 2011].
  • 25 Stern PH. Biphasic effects of manganese on hormone-stimulated bone resorption. Endocrinology 1985; 117 (5) 2044-2049. [Epub Nov 1, 1985].
  • 26 Goyer RA, Cherian MG. Handbook of Experimental Pharmacology, Volume 115. Toxicology of Metals. Springer; 1995
  • 27 Joardar M, Sharma A. Comparison of clastogenicity of inorganic Mn administered in cationic and anionic forms in vivo. Mutation research 1990; 240 (3) 159-163. [Epub Mar 1, 1990].
  • 28 Bae YJ, Kim MH. Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biological trace element research 2008; 124 (1) 28-34. [Epub Mar 12, 2008].