Osteologie 2013; 22(02): 93-99
DOI: 10.1055/s-0038-1630114
Osteologie des Kindes- und Jugendalters
Schattauer GmbH

Genetische Ursachen und therapeutische Optionen bei Osteoporose im Kindes- und Jugendalter

Osteoporosis in children and adolescents – genetic causes and therapeutic options
O. Semler
1   Klinik für Kinder- und Jugendmedizin, Uniklinik Köln
2   UniReha, Uniklinik Köln
,
H. Hoyer-Kuhn
1   Klinik für Kinder- und Jugendmedizin, Uniklinik Köln
,
E. Schönau
1   Klinik für Kinder- und Jugendmedizin, Uniklinik Köln
2   UniReha, Uniklinik Köln
› Author Affiliations
Further Information

Publication History

eingereicht: 10 April 2013

angenommen: 14 April 2013

Publication Date:
30 January 2018 (online)

Zusammenfassung

In den letzten Jahren hat sich die Diagnose “Osteogenesis imperfecta” (OI) von einem klar definierten, aber unvollständig verstandenen Krankheitsbild, zu einem heterogenen Symptomenkomplex gewandelt. Die meisten Patienten sind von einer Mutation in den Genen COL1A1 oder COL1A2 betroffen, die zu einem quantitativen oder qualitativen Mangel an Kollagen I führt. In den vergangenen Jahren wurde das pathophysiologische Verständnis durch neue molekulargenetische Erkenntnisse detaillierter. Mutationen, die Störungen der posttranslationalen Modifikation von Kollagen I bewirken, verursachen genauso den Phänotyp einer OI, wie Störungen der Osteoblastendifferenzierung. Das klinische Bild der OI kann aber über einen anderen pathophysiologischen Weg, wie z. B. der Überaktivierung von Osteoklasten (Mutationen im Gen SERPINF1), hervorgerufen werden. Trotz dieses erweiterten Wissens ist die Therapie weiterhin symptomatisch und beruht auf chirurgisch/orthopädischen und physiotherapeutischen Maßnahmen sowie auf der Behandlung mit Bisphosphonaten. Nur durch eine koordinierte Betreuung in einem Spezialzentrum kann den Kindern die bestmögliche Perspektive für ein Leben mit Glasknochen gegeben werden.

Summary

Osteogenesis imperfecta (OI) as a rare disease (incidence 1 : 20.000) is characterized by a complex of symptoms and signs of reduced bone mass, increased bone fragility, dwarfism and extra-skelettal signs as blue sclera, dentinogenesis imperfecta, reduced connective tissue stability and muscle weakness. In most of the cases (80–90 %) it is caused by autosomal dominant inherited mutations in the collagen genes COL1A1 or COL1A2, which lead to loss of function of the osteo blasts with a quantitative or qualitative collagen deficiency. Additionally, autosomal recessive mutations in the genes CRTAP, LEPRE 1 PPIB, SERPINH1, FKBP10, SP7/OSX, BMP1 and WNT1 lead to qualitative deficiency in the collagen production by the osteo blasts due to different mechanisms of posttranslational modification. Recently the genes leading to OI type V and VI were described. The description of these genes brought a new understanding for the pathophysiology of the disease. In patients suffering from SERPINF 1 mutations (OI VI) an increased activity of the osteoclasts cause the disease. In most cases diagnosis is made clinically. Laboratory examinations of the calcium-phosphate-metabolism, lateral x-ray of the spine and measurement of bone mass are instruments to objectify the diagnosis. There is no clear genotype phenotype association. The therapy is based on three different approaches. Bisphosphonates are used to reduce fracture rates and skeletal pain. Intensive muscle training is essential to achieve independency of the patients and to create a sufficient osteoanabol stimulus for the osteoblasts. In case of fractures and deformities surgical treatment becomes necessary. Offering a multidisciplinary concept to patients with OI might lead to further improvement in the care of these patients. Further research is mandatory to develop an individual translational treatment approach even in patients with a rare disease as OI.

 
  • Literatur

  • 1 Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet 2004; 363 (9418) 1377-1385.
  • 2 Semler O. et al. Wormian bones in osteogenesis imperfecta: Correlation to clinical findings and genotype. Am J Med Genet A 2010; 152A (7) 1681-1687.
  • 3 Marini JC. et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 2007; 28 (3) 209-221.
  • 4 Pollitt R. et al. Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV. Hum Mutat 2006; 27 (7) 716.
  • 5 Forlino A. et al. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 2011; 7 (9) 540-557.
  • 6 Byers PH, Pyott SM. Recessively inherited forms of osteogenesis imperfecta. Annu Rev Genet 2012; 46: 475-497.
  • 7 Becker J. et al. Exome Sequencing Identifies Truncating Mutations in Human SERPINF1 in Autosomal-Recessive Osteogenesis Imperfecta. Am J Hum Genet 2011; 88 (3) 362-371.
  • 8 Semler O. et al. Osteogenesis imperfecta – Genetische Grundlagen und medikamentöse Behandlungsmöglichkeiten. Pädiat Prax 2012; 79: 81-90.
  • 9 Fahiminiya S. et al. Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 2013; 50 (5) 345-348.
  • 10 Keupp K. et al. Mutations in WNT1 Cause Different Forms of Bone Fragility. Am J Hum Genet 2013; 92 (4) 565-574.
  • 11 Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 1979; 16 (2) 101-116.
  • 12 Sillence DO. Osteogenesis imperfecta nosology and genetics. Ann N Y Acad Sci 1988; 543: 1-15.
  • 13 Warman ML. et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 2011; 155A (5) 943-968.
  • 14 Byers PH. et al. Perinatal lethal osteogenesis imperfecta (OI type II): a biochemically heterogeneous disorder usually due to new mutations in the genes for type I collagen. Am J Hum Genet 1988; 42 (2) 237-248.
  • 15 Sarraf KM. Images in clinical medicine. Radiographic zebra lines from cyclical pamidronate therapy. N Engl J Med 2011; 365 (3) e5.
  • 16 Glorieux FH. et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 1998; 339 (14) 947-952.
  • 17 Land C. et al. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta. J Pediatr 2006; 148 (4) 456-460.
  • 18 Gatti D. et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res 2005; 20 (5) 758-763.
  • 19 Semler O. et al. Reshaping of vertebrae during treatment with neridronate or pamidronate in children with osteogenesis imperfecta. Horm Res Paediatr 2011; 76 (5) 321-327.
  • 20 Koerber F. et al. Introduction of a new standardized assessment score of spine morphology in osteogenesis imperfecta. Rofo 2012; 184 (8) 719-725.
  • 21 Land C. et al. Osteogenesis imperfecta type VI in childhood and adolescence: effects of cyclical intravenous pamidronate treatment. Bone 2007; 40 (3) 638-644.
  • 22 Semler O. et al. First use of the RANKL antibody denosumab in Osteogenesis Imperfecta Type VI. J Musculoskelet Neuronal Interact 2012; 12 (3) 183-188.
  • 23 Wirth T. Osteogenesis imperfecta. Orthopade 2012; 41 (9) 773-782 quiz 783-784.
  • 24 Wirth T. Osteogenesis imperfecta. Orthopade. 2012 [Epub ahead of print].
  • 25 Zeitlin L, Fassier F, Glorieux FH. Modern approach to children with osteogenesis imperfecta. J Pediatr Orthop B 2003; 12 (2) 77-87.
  • 26 Engelbert RH. et al. Osteogenesis imperfecta in childhood: treatment strategies. Arch Phys Med Rehabil 1998; 79 (12) 1590-1594.
  • 27 Semler O. et al. Preliminary results on the mobility after whole body vibration in immobilized children and adolescents. J Musculoskelet Neuronal Interact 2007; 7 (1) 77-81.
  • 28 Beck K. et al. Auf die Beineein Reha-Konzept für Kinder. PT interdisziplinäre 2011; 4: 1-16.