Nervenheilkunde 2005; 24(05): 361-368
DOI: 10.1055/s-0038-1629976
Geist & Gehirn
Schattauer GmbH

Haben die unterschiedlichen Antidepressiva unterschiedliche Wirkmechanismen?

Do the different antidepressants have different mechanisms of action?
B. Bondy
,
T.C. Baghai
,
D. Eser
,
C. Schüle
,
R. Rupprecht
,
P. Zill
Further Information

Publication History

Publication Date:
31 January 2018 (online)

Zusammenfassung

Unsere Kenntnisse über pathophysiologische Mechanismen der Depression oder die Wirkmechanismen der Antidepressiva haben sich in den letzten Jahren erheblich erweitert. Dabei wurde deutlich, dass die Erhöhung der Konzentrationen der Neurotransmitter im synaptischen Spalt oder die Interaktionen mit den entsprechenden Rezeptoren vor allem als initialer Schritt zu betrachten sind, durch den es über zahlreiche Aktivierungsschritte in der Synapse letztendlich zu substantiellen Veränderungen der Proteinexpression und damit der neuronalen Funktion kommt. Auch wenn wir heute zunehmend davon ausgehen, dass diese langfristigen Veränderungen der neuronalen Funktion als sogenannte gemeinsame Endstrecke der Antidepressiva- Wirkung angesehen werden kann, ist der Einfluss der unterschiedlichen initialen Wirkmechanismen sowie deren Interaktion mit den verschiedenen Kompartimenten der Signaltransduktion nicht zu vernachlässigen. Besonders die pharmakogenetischen Studien haben gezeigt, dass die Schnelligkeit des Ansprechens auf die Behandlung doch im erheblichem Maße von diesen Mechanismen beeinflusst wird.

Summary

Our recent knowledge about the pathophysiological basis of major depression and the mechanisms of antidepressant action has increased during the last years. Thus there has been some shift in emphasis from the changes in neurotransmitter concentrations or the interactions of these drugs with the respective receptors towards long lasting adaptive processes within the neurones. According to the present hypotheses, the increase in monoaminergic neurotransmitters can be taken as initial triggering effect, inducing activation of transcription factors and target genes that regulate processes such as neuroprotection and cell survival. Although these long-term adaptive alterations might be the common final pathway of different antidepressant regimens, the different biochemical mechanisms of the different classes of antidepressants together with functionally relevant polymorphisms in genes might be relevant for the latency until onset of therapeutic action.

 
  • Literatur

  • 1 Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122: 509-22.
  • 2 McTavish SF, Mannie ZN, Cowen PJ. Tyrosine depletion does not cause depressive relapse in antidepressant-treated patients. Psychopharmacology (Berl) 2004; 175: 124-6.
  • 3 Neumeister A. Tryptophan depletion, serotonin, and depression: where do we stand?. Psychopharmacol Bull 2003; 37: 99-115.
  • 4 Sulser F, Vetulani J, Mobley PL. Mode of action of antidepressant drugs. Biochem Pharmacol 1978; 27: 257-61.
  • 5 Wong ML, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2004; 3: 136-51.
  • 6 Hyman SE, Nestler EJ. Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiatry 1996; 153: 151-62.
  • 7 Avissar S. The role of G proteins in the psychobiology and treatment of affective disorders and their integration with the neurotransmitter hypothesis. Curr Psychiatry Rep 1999; 1: 148-53.
  • 8 Donati RJ, Rasenick MM. G protein signaling and the molecular basis of antidepressant action. Life Sci 2003; 73: 1-17.
  • 9 Bauer PH, Bluml K, Schroder S, Hegler J, Dees C, Lohse MJ. Interactions of phosducin with the subunits of G-proteins. Binding to the alpha as well as the betagamma subunits. J Biol Chem 1998; 273: 9465-71.
  • 10 Lenox RH, McNamara RK, Papke RL, Manji HK. Neurobiology of lithium: an update. J Clin Psychiatry 1998; 59 (Suppl. 06) 37-47.
  • 11 Popoli M, Brunello N, Perez J, Racagni G. Second messenger-regulated protein kinases in the brain: their functional role and the action of antidepressant drugs. J Neurochem 2000; 74: 21-33.
  • 12 Smeraldi E, Zanardi R, Benedetti F, Di BellaD, Perez J, Catalano M. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 1998; 3: 508-11.
  • 13 Serretti A, Artioli P. From molecular biology to pharmacogenetics: a review of the literature on antidepressant treatment and suggestions of possible candidate genes. Psychopharmacology (Berl) 2004; 174: 490-503.
  • 14 Murphy Jr GM, Hollander SB, Rodrigues HE, Kremer C, Schatzberg AF. Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry 2004; 61: 1163-9.
  • 15 Minov C, Baghai TC, Schule C, Zwanzger P, Schwarz MJ, Zill P. et al. Serotonin-2A-receptor and -transporter polymorphisms: Lack of association in patients with major depression. Neurosci Lett 2001; 303: 119-22.
  • 16 Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Behrens S. et al. Association analysis of a polymorphism in the G-protein stimulatory alpha subunit in patients with major depression. Am J Med Genet 2002; 114: 530-2.
  • 17 Elena CM, Diaz A, del OlmoE, Pazos A. Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology 2003; 44: 93-101.
  • 18 Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R. et al. Association of a human G-protein beta3 subunit variant with hypertension (see comments). Nat Genet 1998; 18: 45-8.
  • 19 Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Riedel M. et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 2000; 11: 1893-7.
  • 20 Lee HJ, Cha JH, Ham BJ, Han CS, Kim YK, Lee SH. et al. Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J 2004; 4: 29-33.
  • 21 Serretti A, Lorenzi C, Cusin C, Zanardi R, Lattuada E, Rossini D. et al. SSRIs antidepressant activity is influenced by G beta 3 variants. Eur Neuropsychopharmacol 2003; 13: 117-22.
  • 22 Thome J, Duman RS, Henn FA. Molecular aspects of antidepressive therapy. Transsynaptic effects on signal transduction, gene expression and neuronal plasticity. Nervenarzt 2002; 73: 595-9.
  • 23 Duman RS. Structural alterations in depression: cellular mechanisms underlying pathology and treatment of mood disorders. CNS Spectr 2002; 7: 140-2.
  • 24 Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251-61.
  • 25 Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 1996; 16: 2365-72.
  • 26 Duman RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 2004; 5: 11-25.
  • 27 Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260-5.
  • 28 Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109: 143-8.
  • 29 Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C. et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003; 54: 70-5.
  • 30 Aydemir O, Deveci A, Taneli F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 261-5.
  • 31 Lang UE, Hellweg R, Gallinat J. BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacol 2004; 29: 795-8.
  • 32 Holoubek G, Noldner M, Treiber K, Muller WE. Effect of chronic antidepressant treatment on beta-receptor coupled signal transduction cascade. Which effect matters most?. Pharmacopsychiat 2004; 37 (Suppl. 02) S113-S119.
  • 33 Henn FA, Vollmayr B. Neurogenesis and depression: etiology or epiphenomenon?. Biol Psychiatry 2004; 56: 146-50.
  • 34 Holsboer F, Barden N. Antidepressants and hypothalamic- pituitary-adrenocortical regulation. Endocr Rev 1996; 17: 187-205.
  • 35 Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacol 2000; 23: 477-501.
  • 36 Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B. et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 2004; 36: 1319-25.
  • 37 Dempster E, Toulopoulou T, McDonald C, Bramon E, Walshe M, Filbey F. et al. Association between BDNF val(66) met genotype and episodic memory. Am J Med Genet B Neuropsychiatr Genet. 2005 in Druck.
  • 38 Skibinska M, Hauser J, Czerski PM, Leszczynska-Rodziewicz A, Kosmowska M, Kapelski P. et al. Association analysis of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism in schizophrenia and bipolar affective disorder. World J Biol Psychiatry 2004; 5: 215-20.
  • 39 Yamada K, Nabeshima T. Interaction of BDNF/TrkB signaling with NMDA receptor in learning and memory. Drug News Perspect 2004; 17: 435-8.
  • 40 Nutt D. Substance-P antagonists: a new treatment for depression?. Lancet 1998; 352: 1644-6.
  • 41 Jeunemaitre X. Genetic polymorphisms in the renin-angiotensin system. Therapie 1998; 53: 271-7.
  • 42 Jezova D, Ochedalski T, Kiss A, Aguilera G. Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. J Neuroendocrinology 1998; 10: 67-72.
  • 43 Baghai T, Schüle C, Zwanzger P, Minov C, Schwarz J, de JongeS. et al. Possible influence of the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene on therapeutic outcome in affective disorders. Molecular Psychiatry 2001; 6: 258-9.
  • 44 Baghai TC, Schule C, Zwanzger P, Zill P, Ella R, Eser D. et al. Influence of a functional polymorphism within the angiotensin I-converting enzyme gene on partial sleep deprivation in patients with major depression. Neurosci Lett 2003; 339: 223-6.
  • 45 Baghai TC, Schule C, Zwanzger P, Minov C, Zill P, Ella R. et al. Hypothalamic-pituitary-adrenocortical axis dysregulation in patients with major depression is influenced by the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene. Neurosci Lett 2002; 328: 299-303.
  • 46 Bondy B, Baghai TC, Zill P, Bottlender R, Jaeger M, Minov C. et al. Combined action of the ACE Dand the G-protein ß3-allele in major depression: a possible link to cardiovascular disorder?. Molecular Psychiatry 2002; 7: 1120-6.
  • 47 Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I. Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ Res 2004; 94: 60-7.
  • 48 Duman RS. Synaptic plasticity and mood disorders. Mol Psychiatry 2002; 7 (Suppl. 01) S29-S34.