Nervenheilkunde 2013; 32(07): 454-465
DOI: 10.1055/s-0038-1628520
Neuroradiologie
Schattauer GmbH

MRT bei zerebralen Mikroangiopathien

MRI in cerebral small vessel diseases
J. Linn
1   Abteilung für Neuroradiologie, Klinikum der Universität München
› Author Affiliations
Further Information

Publication History

eingegangen am: 12 February 2013

angenommen am: 01 March 2013

Publication Date:
24 January 2018 (online)

Zusammenfassung

Unter einer zerebralen Mikroangiopathie (ZMA) versteht man Erkrankungen der kleinen hirnversorgenden Gefäße, die für ca. 20 bis 30% aller ischämischen Schlaganfälle verantwortlich sind. Während einige ZMA ausschließlich die zerebralen Gefäße betreffen, handelt es sich bei anderen Erkrankungen um Systemerkrankungen, die zu extrakraniellen Manifestationen führen können. Eine einheitliche Klassifikation der ZMA existiert in der Literatur nicht. Sinnvoll ist die Unterscheidung zwischen den häufigen erworbenen und den überwiegend sehr seltenen, angeborenen ZMA. In dieser Arbeit werden charakteristische MRT-Befunde, die bei allen Formen der ZMA in mehr oder weniger starker Ausprägung und Lokalisation gefunden werden, dargestellt. Im Anschluss werden spezifische bildgebende Charakteristika der wichtigsten Formen der ZMA, das heißt, der degenerativen Mikroangiopathie (DMA), der zerebralen Amyloidangiopathie (CAA), der CADASIL-Erkrankung, des Morbus Fabry, der hereditären Amyloidangiopathien und der COL4A1-assoziierten, zerebrale Mikroangiopathien, erläutert.

Summary

Cerebral small vessel diseases (CSVD) constitute a rather heterogenous group of diseases characterized by pathological changes of the small cerebral vessels. They account for 20 to 30% of all ischemic strokes. While some CSVD are restricted to the cerebral vessels, others represent systemic diseases and also lead to extracranial manifestations. No widely accepted classification of these diseases exists, to date. However, it is reasonable to distinguish the very common sporadic CVSD from a variety of rare, hereditary forms. The first part of this review focuses on general MR imaging findings in CSVD. Characteristic imaging signs of the specific disease entities, i. e. degenerative microangiopathy, sporadic cerebral amyloid angiography, CADASIL, Fabry’s disease, hereditary cerebral amyloid angiopathies, and COL4A1-related cerebral small vessel diseases are detailed in the second part of the review.

 
  • Literatur

  • 1 Hachinski VC, Potter P, Merskey H. Leukoaraiosis. Arch Neurol 1987; 44: 21-23.
  • 2 Pantoni L, Garcia JH. The significance of cerebral white matter abnormalities 100 years after Binswanger´s report. Stroke 1995; 26: 1293-1301.
  • 3 Kertesz A, Black SE, Tokar G, Benke T, Carr T, Nicholson L. Periventricular and subcortical hyperintensities on magnetic resonance imaging. ‘Rims, caps, and unidentified bright objects’. Arch Neurol 1988; 45: 404-408.
  • 4 Ovbiagele B, Saver JL. Cerebral white matter hyperintensities on MRI: Current concepts and therapeutic implications. Cerebrovasc Dis 2006; 22: 83-90.
  • 5 Wahlund LO. et al. European Task Force on AgeRelated White Matter Changes. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001; 32: 1318-1322.
  • 6 Norrving B. Lacunar infarcts: no black holes in the brain are benign. Pract Neurol 2008; 08: 222-228.
  • 7 Bailey EL, Smith C, Sudlow CL, Wardlaw JM. Pathology of lacunar ischemic stroke in humans – a systematic review. Brain Pathol 2012; 22: 583-591.
  • 8 Potter GM, Marlborough FJ, Wardlaw JM. Wide variation in definition, detection, and description of lacunar lesions on imaging. Stroke 2011; 42: 359-366.
  • 9 Kwee RM, Kwee TC. Virchow-Robin spaces at MR imaging. Radiographics 2007; 27: 1071-1086.
  • 10 Oztürk MH, Aydingöz U. Comparison of MR signal intensities of cerebral perivascular (VirchowRobin) and subarachnoid spaces. J Comput Assist Tomogr 2002; 26: 902-904.
  • 11 Pullicino PM, Miller LL, Alexandrov AV, Ostrow PT. Infraputaminal ‘lacunes’: clinical and pathological correlations. Stroke 1995; 26: 1598-1602.
  • 12 Jungreis CA. et al. Normal perivascular spaces mimicking lacunar infarction: MR imaging. Radiology 1988; 169: 101-104.
  • 13 Heier LA. et al. Large Virchow-Robin spaces:MRclinical correlation. AJNR Am J Neuroradiol 1989; 10: 929-936.
  • 14 Doubal FN. et al. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010; 41: 450-454.
  • 15 Rouhl R. et al. Virchow-Robin spaces relate to cerebral small vessel disease severity. J Neurol 2008; 255: 692-696.
  • 16 Greenberg SM. et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009; 08: 165-174.
  • 17 Oftenbacher H. et al. MR of cerebral abnormalities concomitant with primary intracerebral hematomas. AJNR Am J Neuroradiol 1996; 17: 573-578.
  • 18 Fazekas F. et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999; 20: 637-642.
  • 19 Nandigam RN. et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009; 30: 338-343.
  • 20 Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52: 612-618.
  • 21 Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 2009; 30: 232-252.
  • 22 Sehgal V. et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 2005; 22: 439-450.
  • 23 Fiehler J. Cerebral microbleeds: old leaks and new haemorrhages. Int J Stroke 2006; 01: 122-130.
  • 24 Gaviani P. et al. Improved detection of metastatic melanoma by T2*-weighted imaging. AJNR Am J Neuroradiol 2006; 27: 605-608.
  • 25 Scheid R. et al. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol 2003; 24: 1049-1056.
  • 26 Okazaki S. et al. Cerebral microbleeds predict impending intracranial hemorrhage in infective endocarditis. Cerebrovasc Dis 2011; 32: 483-488.
  • 27 Qureshi A. et al. Spontaneous intracerebral hemorrhage. NEJM N Engl J Med 2001; 344: 1450-1460.
  • 28 Linn J, Brückmann H. Differential diagnosis of nontraumatic intracerebral hemorrhage. Klin Neuroradiol 2009; 19: 45-61.
  • 29 Linn J. et al. Subarachnoid hemosiderosis and superficial cortical hemosiderosis in cerebral amyloid angiopathy. AJNR Am J Neuroradiol 2008; 29: 184-186.
  • 30 Kumar S. et al. Atraumatic convexal subarachnoid hemorrhage: Clinical presentation, imaging patterns and etiologies. Neurology 2010; 74: 893-899.
  • 31 Raposo N. et al. Cortical subarachnoid haemorrhage in the elderly: a recurrent event probably related to cerebral amyloid angiopathy. Eur J Neurol 2011; 18: 597-603.
  • 32 Yuan MK. et al. Detection of subarachnoid hemorrhage at acute and subacute/chronic stages: comparison of four magnetic resonance imaging pulse sequences and computed tomography. J Chin Med Assoc 2005; 68: 131-137.
  • 33 Noguchi K. et al. Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion-recovery MR imaging. Radiology 1997; 203: 257-262.
  • 34 Linn J. et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010; 74: 1346-1350.
  • 35 Kumar N. et al. Superficial siderosis. Neurology 2006; 66: 1144-1152.
  • 36 Linn J. et al. Cortical vein thrombosis: the diagnostic value of different imaging modalities. Neuroradiology 2010; 52: 899-911.
  • 37 Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 09: 689-701.
  • 38 Ringelstein EB, Nabavi DG. Cerebral small vessel diseases: cerebral microangiopathies. Curr Opin Neurol 2005; 18: 179-188.
  • 39 Lammie GA. Hypertensive cerebral small vessel disease and stroke. Brain Pathol 2002; 12: 358-370.
  • 40 Lammie GA. Pathology of small vessel stroke. Br Med Bull 2000; 56: 296-306.
  • 41 Fisher CM. Lacunar strokes and infarcts: a review. Neurology 1982; 32: 871-876.
  • 42 Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathol 1968; 12: 1-15.
  • 43 Fisher CM. Hypertensive cerebral hemorrhage. Demonstration of the source of bleeding. J Neuropathol Exp Neurol 2003; 62: 104-147.
  • 44 Cole FM, Yates PO. Pseudo-aneurysms in relationship to massive cerebral hemorrhage. J Neurol Neurosurg Psychiatry 1967; 30: 61-66.
  • 45 Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011; 70: 871-880.
  • 46 Auriel E, Greenberg SM. The pathophysiology and clinical presentation of cerebral amyloid angiopathy. Curr Atheroscler Rep 2012; 14: 343-350.
  • 47 Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry 2012; 83: 124-137.
  • 48 Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987; 18: 311-324.
  • 49 Attems J. et al. Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2011; 37: 75-93.
  • 50 Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke 1983; 14: 924-928.
  • 51 Attems J. et al. Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are in?uenced by Alzheime disease pathology. J Neurol Sci 2007; 257: 49-55.
  • 52 Attems J. Sporadic cerebral amyloid angiopathy: pathology, clinical implications, and possible pathomechanisms. Acta Neuropathol 2005; 110: 345-359.
  • 53 Rosand J. et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol 2005; 58: 459-462.
  • 54 Beitzke M, Gattringer T, Enzinger C, Wagner G, Niederkorn K, Fazekas F. Clinical presentation, etiology, and long-term prognosis in patients with nontraumatic convexal subarachnoid hemorrhage. Stroke 2011; 42: 3055-3060.
  • 55 Maia LF, Mackenzie IR, Feldman HH. Clinical phenotypes of Cerebral Amyloid Angiopathy. J Neurol Sci 2007; 257: 23-30.
  • 56 Izenberg A. et al. Crescendo transient aura attacks: a transient ischemic attack mimic caused by focal subarachnoid hemorrhage. Stroke 2009; 40: 3725-3729.
  • 57 Brunot S, Fromont A, Ricolfi F, Moreau T, Giroud M. [Focal subarachnoid hemorrhage and cerebral amyloid angiopathy: a non-fortuitous association]. Rev Neurol (Paris) 2010; 166: 83-89.
  • 58 Linn J. et al. Superficial siderosis is a warning sign for future intracranial hemorrhage. J Neurol 2013; 260: 176-181.
  • 59 Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001; 56: 537-539.
  • 60 van Rooden S. et al. Descriptive analysis of the Boston criteria applied to a Dutch-type cerebral amyloid angiopathy population. Stroke 2009; 40: 3022-3027.
  • 61 Zhu YC. et al. Distribution of white matter hyperintensity in cerebral hemorrhage and healthy aging. J Neurol 2012; 259: 530-256.
  • 62 Wardlaw JM. Blood brain barrier and cerebral small vessel disease. J Neurol Sci 2010; 299: 66-71.
  • 63 Gouw AA. et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 2010; 82: 126-135.
  • 64 Kimberly WT. et al. Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy. Neurology 2009; 72: 1230-1235.
  • 65 Soontornniyomkij V. et al. Cerebral microinfarcts associated with severe cerebral beta-amyloid angiopathy. Brain Pathol 2010; 20: 459-467.
  • 66 Menon RS, Kidwell CS. Neuroimaging demonstration of evolving small vessel ischemic injury in cerebral amyloid angiopathy. Stroke 2009; 40: e675-677.
  • 67 Eng JA. et al. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol 2004; 55: 250-256.
  • 68 Kinnecom C. et al. Course of cerebral amyloid angiopathy-related inflammation. Neurology 2007; 68: 1411-1416.
  • 69 DiFrancesco JC. et al. Anti-Aâ autoantibodies in the CSF of a patient with CAA-related inflammation: a case report. Neurology 2011; 76: 842-844.
  • 70 Chung KK. et al. Cerebral amyloid angiopathy related inflammation: three case reports and a review. J Neurol Neurosurg Psychiatry 2011; 82: 20-26.
  • 71 Salloway S. et al. Bapineuzumab 201 Clinical Trial Investigators. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate. Alzheimer disease. Neurology 2009; 73: 2061-2070.
  • 72 Chabriat H. et al. Cadasil. Lancet Neurol 2009; 08: 643-653.
  • 73 Razvi SS, Davidson R, Bone I, Muir KW. The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 2005; 76: 739-741.
  • 74 Joutel A. et al. De novo mutation in the Notch3 gene causing CADASIL. Ann Neurol 2000; 47: 388-391.
  • 75 Dichgans M. et al. The phenotypic spectrum of CADASIL: clinical ?ndings in 102 cases. Ann Neurol 1998; 44: 731-739.
  • 76 Golomb MR. et al. Recurrent hemiplegia, normal MRI, and NOTCH3 mutation in a 14-year-old: is this early CADASIL?. Neurology 2004; 62: 2331-2332.
  • 77 Chabriat H. et al. Patterns of MRI lesions in CADASIL. Neurology 1998; 51: 452-457.
  • 78 Viswanathan A. et al. Impact of MRI markers in subcortical vascular dementia: a multi-modal analysis in CADASIL. Neurobiol Aging 2010; 31: 1629-1636.
  • 79 O’Sullivan M. et al. Frequency of subclinical lacunar infarcts in ischemic leukoaraiosis and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. AJNR Am J Neuroradiol 2003; 24: 1348-1354.
  • 80 Cumurciuc R. et al. Dilation of Virchow-Robin spaces in CADASIL. Eur J Neurol 2006; 13: 187-190.
  • 81 Jacqmin M. et al. Confluent thalamic hyperintensities in CADASIL. Cerebrovasc Dis 2010; 30: 308-313.
  • 82 Auer DP. et al. Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group compari-son. Radiology 2001; 218: 443-451.
  • 83 Dichgans M. et al. Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke 2002; 33: 67-71.
  • 84 Revesz T. et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009; 118: 115-130.
  • 85 Maat-Schieman M, Roos R, van Duinen S. Hereditary cerebral hemorrhage with amyloidosis-Dutch type. Neuropathology 2005; 25: 288-297.
  • 86 Bersano A. et al. Neurological features of Fabry disease: clinical, pathophysiological aspects and therapy. Acta Neurol Scand 2012; 126: 77-97.
  • 87 Macdermot KD, Holmes A, Miners AH. Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet 2001; 38: 769-771.
  • 88 Mitsias P, Levine SR. Cerebrovascular complications of Fabry disease. Ann Neurol 1996; 40: 8-17.
  • 89 Sims K, Politei J, Banikazemi M, Lee P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural his-tory data from the Fabry Registry. Stroke 2009; 40: 788-794.
  • 90 Mehta A, Ginsberg L. FOS Investigators. Natural history of the cerebrovascular complications of Fabry disease. Acta Paediatr 2005; 94: 24-27.
  • 91 Fellgiebel A, Muller MJ, Ginsberg L. CNS manifestations of Fabry disease. Lancet Neurol 2005; 05: 791-795.
  • 92 Fellgiebel A. et al. Diagnostic utility of different MRI and MR angiography measures in Fabry disease. Neurology 2009; 72: 63-68.
  • 93 Moore DF, Ye F, Schiffmann R, Butman JA. Increased signal intensity in the pulvinar on T1-weighted images: a pathognomonic MR imaging sign of Fabry disease. AJNR Am J Neuroradiol 2003; 24: 1096-1101.
  • 94 Takanashi J. et al. T1 hyperintensity in the pulvinar: key imaging feature for diagnosis of Fabry disease. AJNR Am J Neuroradiol 2003; 24: 916-921.
  • 95 Reisin RC. et al. Brain MRI findings in patients with Fabry disease. J Neurol Sci 2011; 305: 41-44.
  • 96 Nakamura K. et al. Cerebral hemorrhage in Fabry’s disease. J Hum Genet 2010; 55: 259-261.
  • 97 Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 2010; 41: e513-518.
  • 98 Weng YC. et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol 2012; 71: 470-477.
  • 99 Vahedi K. et al. COL4A1 mutation in a patient with sporadic, recurrent intracerebral hemorrhage. Stroke 2007; 38: 1461-1464.
  • 100 Gould DB. et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 2006; 354: 1489-1496.