Nervenheilkunde 2015; 34(12): 965-975
DOI: 10.1055/s-0038-1627660
Hirnstimulation
Schattauer GmbH

rTMS in der Therapie psychiatrischer Erkrankungen

Grundlagen und Methodik[*] rTMs in depressive disorderbasics and methods
P. M. Kreuzer
1   Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg am Bezirksklinikum, Regensburg
,
J. Höppner
2   Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsmedizin Rostock
,
T. Kammer
3   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
C. Schönfeldt-Lecuona
3   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
F. Padberg
4   Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München
,
M. Bajbouj
5   Klinik für Psychiatrie und Psychotherapie, Charité –Universitätsmedizin Berlin, Campus Benjamin Franklin
,
P. Zwanzger
6   kbo-Inn-Salzach-Klinikum gemeinnützige GmbH, Fachkrankenhaus für Psychiatrie, Psychotherapie, Psychosomatische Medizin, Geriatrie und Neurologie
,
C. Plewnia
7   Universitätsklinik für Psychiatrie und Psychotherapie, Universität Tübingen
,
A. Fallgatter
7   Universitätsklinik für Psychiatrie und Psychotherapie, Universität Tübingen
,
M. Landgrebe
8   kboLech-Mangfall-Klinik Agatharied, Psychiatrie – Psychotherapie – Psychosomatik
,
J. Cordes
9   LVR-Klinikum Düsseldorf, Kliniken der Heinrich-Heine-Universität Düsseldorf
,
T. Wobrock
10   Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität Göttingen
11   Zentrum für Seelische Gesundheit, Kreiskliniken Darmstadt-Dieburg, Groß-Umstadt
,
A. Hasan
4   Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München
,
G. Hajak 13
12   Klinik für Psychiatrie und Psychotherapie, Sozialstiftung Bamberg, Bamberg
,
M. Schecklmann
1   Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg am Bezirksklinikum, Regensburg
,
J.-P. Lefaucheur
13   Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, Créteil, France
14   EA 4391, Nerve Excitability and Therapeutic team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
,
B. Langguth
1   Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg am Bezirksklinikum, Regensburg
› Author Affiliations
Further Information

Publication History

eingegangen am: 01 October 2015

angenommen am: 01 October 2015

Publication Date:
22 January 2018 (online)

Zusammenfassung

Als transkranielle Magnetstimulation (TMS) wird ein Verfahren bezeichnet, bei dem ein Stimulator über eine Spule kurze elektromagnetische Pulse mit einer Flussdichte von bis zu 2 Tesla induziert, welche die Schädelkalotte mit wenig Abschwächung durchdringen und zu einer Depolarisierung neuronaler Zellverbände führen. Die Stromdichte am Stimulationsort wird von einer Vielzahl physikalischer und biologischer Parametern bestimmt: Spulengeometrie sowie -positionierung, der Abstand der Spule zum Kortex, die Pulsform, die Intensität, Frequenz und das Muster der Stimulation sowie die dreidimensionale Orientierung der stimulierten neuronalen Strukturen im Verhältnis zur Geometrie des Magnetfeldes. Bei der repetitiven transkraniellen Magnetstimulation (rTMS) werden mehrere elektromagnetische Einzelstimuli als Reizserien mit konstanter Wiederholungsrate appliziert. Mithilfe dieser repetitiven TMS können Veränderungen der neuronalen Aktivität induziert werden, die über die eigentliche Stimulationsdauer hinweg andauern. Im vorliegenden Themenheft wird die Datenlage zu etablierten und potenziellen therapeutischen Anwendungen der repetitiven transkraniellen Magnetstimulation in psychiatrischen Indikationsgebieten zusammengefasst. Eine Empfehlung mit Evidenzgrad A kann für die hochfrequente rTMS-Behandlung des linken dorsolateralen präfrontalen Kortex (DLPFC) bei depressiven Störungen ausgesprochen werden. Empfehlungen mit dem Evidenzgrad B bestehen für niederfrequente rTMS des rechten DLPFC bei der Behandlung depressiver Störungen und für hochfrequente rTMS des linken DLPFC bei depressiver Symptomatik von Patienten mit Parkinson-Syndrom. Wahrscheinlich besteht ein additiver Effekt von rTMS des DLPFC zu einer antidepressiven Pharmakotherapie. Eine Empfehlung mit dem Evidenzgrad C kann folgenden rTMS-Paradigmen zugesprochen werden: hochfrequente rTMS des linken DLPFC bei Patienten mit schizophrener Negativsymptomatik (trotz einer großen negativen Multicenterstudie), niederfrequente rTMS des linken TPC bei chronischem Tinnitus und akustischen Halluzinationen (trotz vieler Publikationen eher niedriges Evidenzniveau), hochfrequente rTMS des rechten DLPFC bei Patienten mit posttraumatischer Belastungsstörung und hochfrequente rTMS des linken DLPFC bei Nikotinabhängigkeit. Gerade bei der Behandlung von Patienten mit chronischem und therapieresistentem Erkrankungsverlauf ist zu erwarten, dass dem gesamten Bereich neurostimulatorischer Methoden eine steigende Bedeutung zukommen wird. Es bleibt zu hoffen, dass vor dem Hintergrund innovativer technischer Entwicklungen und verbesserter Studienmethodologie die transkranielle Magnetstimulation in der nahen Zukunft ihr volles therapeutisches Potenzial entfalten wird.

Summary

Transcranial magnetic stimulation (TMS) is a neuromodulatory technique consisting of short electromagnetic stimuli of approx. 2 Tesla produced by a stimulator connected to a coil. These magnetic fields penetrate the skull painlessly resulting in a depolarization of cortical neurons. The power of the magnetic field at the target area is mainly determined by a variety of physical and biological parameters such as coil geometry, coil position, coil distance to cortical target, pulse form, stimulation intensity, frequency, stimulation pattern, threedimensional orientation of cortical target in relation to the geometry of the applied magnetic field. Repetitive transcranial magnetic stimulation (rTMS) means the serial application of several electromagnetic stimuli at a given repetition rate. rTMS is able to evoke lasting changes in neuronal activity by induction of neuroplastic activity. The aim of the presented special issue is to provide a comprehensive overview regarding established and potential therapeutic applications of rTMS in the treatment of psychiatric disorders. A level-A-recommendation (“definitively effective”) is obtained for high-frequency stimulation of the left dorsolateral prefrontal cortex (DLPFC) in depressive disorders. Level-B-evidence (“probably effective”) is available for: (i) low-frequency rTMS of the right DLPFC in depressive disorders and (ii) high-frequency rTMS of the left DLPFC in case of depressive symptoms in patients suffering from Parkinson’s disease (probably additive effect of rTMS to antidepressant medication). Level-C-evidence (“possibly effective”) is available for: high-frequency rTMS of the left DLPFC in the treatment of negative symptoms in schizophrenic patients (despite a large multicenter- trial with negative findings), low-frequency rTMS of the left temporoparietal cortex in chronic tinnitus and acoustic halluzinations (low level of evidence despite a large number of publications), high-frequency stimulation of the right DLPFC in posttraumatic stress disorder (PTSD), and high-frequency rTMS of the left DLPFC in nicotine craving. It is very likely that – especially in the treatment of patients with chronic and treatment resistant conditions – the whole spectrum of neuromodulatory treatments will obtain increasing importance in the future. Innovative technical advances and improved study methodology may increase the potential of repetitive transcranial magnetic stimulation as an innovative and noninvasive treatment approach.

* Dieses Manuskript wurde als Positionspapier der Deutschen Gesellschaft für Hirnstimulation in der Psychiatrie (DGHP) erarbeitet.


 
  • Literatur

  • 1 Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985; 01 (8437): 1106-7.
  • 2 Barker AT. The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl 1999; 51: 3-21.
  • 3 Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015 Feb 10.; E-pub.
  • 4 Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR. et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008; 119 (03) 504-32.
  • 5 Thielscher A, Kammer T. Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol 2004; 115 (07) 1697-708.
  • 6 Roth Y, Amir A, Levkovitz Y, Zangen A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J Clin Neurophysiol 2007; 24 (01) 31-8.
  • 7 Deng ZD, Peterchev AV, Lisanby SH. Coil design considerations for deep-brain transcranial magnetic stimulation (dTMS). Conf Proc IEEE Eng Med Biol Soc 2008; 5675-9.
  • 8 Salvador R, Miranda PC, Roth Y, Zangen A. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation. Phys Med Biol 2009; 54 (10) 3113-28.
  • 9 Sommer M, Alfaro A, Rummel M, Speck S, Lang N, Tings T. et al. Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex. Clin Neurophysiol 2006; 117 (04) 838-44.
  • 10 Sommer M, Lang N, Tergau F, Paulus W. Neuronal tissue polarization induced by repetitive transcranial magnetic stimulation?. Neuroreport 2002; 13 (06) 809-11.
  • 11 Arai N, Okabe S, Furubayashi T, Terao Y, Yuasa K, Ugawa Y. Comparison between short train, monophasic and biphasic repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex. Clin Neurophysiol 2009; 116 (03) 605-13.
  • 12 Taylor JL, Loo CK. Stimulus waveform influences the efficacy of repetitive transcranial magnetic stimulation. J Affect Disord 2007; 97 (1–3): 271-6.
  • 13 Arai N, Okabe S, Furubayashi T, Mochizuki H, Iwata NK, Hanajima R. et al. Differences in aftereffect between monophasic and biphasic high-frequency rTMS of the human motor cortex. Clin Neurophysiol 2007; 118 (10) 2227-33.
  • 14 Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I. Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res 1997; 113 (01) 24-32.
  • 15 Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A. et al. Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 1998; 109 (05) 397-401.
  • 16 Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P. et al. The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 2004; 115 (02) 255-66.
  • 17 Di Lazzaro V, Oliviero A, Pilato F, Mazzone P, Insola A, Ranieri F. et al. Corticospinal volleys evoked by transcranial stimulation of the brain in conscious humans. Neurol Res 2003; 25 (02) 143-50.
  • 18 Lefaucheur JP. Principles of therapeutic use of transcranial and epidural cortical stimulation. Clin Neurophysiol 2008; 119 (10) 2179-84.
  • 19 Di Lazzaro V, Ziemann U, Lemon RN. State of the art: Physiology of transcranial motor cortex stimulation. Brain Stimul 2008; 01 (04) 345-62.
  • 20 Pascual-Leone A, Houser CM, Grafman J, Hallett M. Reaction time and transcranial magnetic stimulation. Lancet 1992; 339 (8806): 1420.
  • 21 Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cohen LG, Hallett M. Seizure induction and transcranial magnetic stimulation. Lancet 1992; 339 (8799): 997.
  • 22 Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994; 117: 847-58.
  • 23 Lefaucheur JP. Methods of therapeutic cortical stimulation. Neurophysiol Clin 2009; 39 (01) 1-14.
  • 24 Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005; 45 (02) 201-6.
  • 25 Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 2013; 23 (07) 1593-605.
  • 26 Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973; 232 (02) 331-56.
  • 27 Malenka RC. Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 1991; 06 (01) 53-60.
  • 28 Houdayer E, Degardin A, Cassim F, Bocquillon P, Derambure P, Devanne H. The effects of low-and high-frequency repetitive TMS on the input/output properties of the human corticospinal pathway. Exp Brain Res 2008; 187 (02) 207-17.
  • 29 Di Lazzaro V, Dileone M, Pilato F, Capone F, Musumeci G, Ranieri F. et al. Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol 2011; 105 (05) 2150-6.
  • 30 Daskalakis ZJ, Moller B, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Exp Brain Res 2006; 174 (03) 403-12.
  • 31 Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN. et al. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 2004; 24 (13) 3379-85.
  • 32 Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN. et al. Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry 2004; 56 (09) 634-9.
  • 33 Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen JP. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 2006; 67 (09) 1568-74.
  • 34 Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 1982; 02 (01) 32-48.
  • 35 Abraham WC, Tate WP. Metaplasticity: a new vista across the field of synaptic plasticity. Prog Neurobiol 1997; 52 (04) 303-23.
  • 36 Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 2004; 05 (02) 97-107.
  • 37 Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol 2010; 588: 2291-304.
  • 38 Hoogendam JM, Ramakers GM, Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 2010; 03 (02) 95-118.
  • 39 Modugno N, Nakamura Y, MacKinnon CD, Filipovic SR, Bestmann S, Berardelli A. et al. Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp Brain Res 2001; 140 (04) 453-9.
  • 40 Peinemann A, Reimer B, Loer C, Quartarone A, Munchau A, Conrad B. et al. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol 2004; 115 (07) 1519-26.
  • 41 Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M. et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997; 48 (05) 1398-403.
  • 42 Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 2000; 111 (05) 800-5.
  • 43 Touge T, Gerschlager W, Brown P, Rothwell JC. Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?. Clin Neurophysiol 2001; 112 (11) 2138-45.
  • 44 Gangitano M, Valero-Cabre A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A. Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 2002; 113 (08) 1249-57.
  • 45 Houze B, Bradley C, Magnin M, Garcia-Larrea L. Changes in sensory hand representation and pain thresholds induced by motor cortex stimulation in humans. Cereb Cortex 2013; 23 (11) 2667-76.
  • 46 Bear MF, Kirkwood A. Neocortical long-term potentiation. Curr Opin Neurobiol 1993; 03 (02) 197-202.
  • 47 Morris GL. A retrospective analysis of the effects of magnet-activated stimulation in conjunction with vagus nerve stimulation therapy. Epilepsy Behav 2003; 04 (06) 740-5.
  • 48 Beuter A, Lefaucheur JP, Modolo J. Closed-loop cortical neuromodulation in Parkinson’s disease: An alternative to deep brain stimulation?. Clin Neurophysiol 2014; 125 (05) 874-85.
  • 49 Fox P, Ingham R, George MS, Mayberg H, Ingham J, Roby J. et al. Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport 1997; 08 (12) 2787-91.
  • 50 Siebner H, Peller M, Lee L. TMS and positron emission tomography: methods and current advances. In: Wassermann E. et al. (eds.). The Oxford Handbook of Transcranial Magnetic Stimulation. Oxford: Oxford University Press; 2008: 549-67.
  • 51 Lefaucheur JP. Neurophysiology of cortical stimulation. Int Rev Neurobiol 2012; 107: 57-85.
  • 52 Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. Interhemispheric inhibition of the human motor cortex. J Physiol 1992; 453: 525-46.
  • 53 Hanajima R, Ugawa Y, Machii K, Mochizuki H, Terao Y, Enomoto H. et al. Interhemispheric facilitation of the hand motor area in humans. J Physiol 2001; 531: 849-59.
  • 54 Mochizuki H, Terao Y, Okabe S, Furubayashi T, Arai N, Iwata NK. et al. Effects of motor cortical stimulation on the excitability of contralateral motor and sensory cortices. Exp Brain Res 2004; 158 (04) 519-26.
  • 55 Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J. BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 2005; 28 (01) 22-9.
  • 56 Keck ME, Sillaber I, Ebner K, Welt T, Toschi N, Kaehler ST. et al. Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 2000; 12 (10) 3713-20.
  • 57 Keck ME, Welt T, Muller MB, Erhardt A, Ohl F, Toschi N. et al. Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology 2002; 43 (01) 101-9.
  • 58 Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 2001; 21 (15) RC157.
  • 59 Strafella AP, Paus T, Fraraccio M, Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 2003; 126: 2609-15.
  • 60 Ohnishi T, Hayashi T, Okabe S, Nonaka I, Matsuda H, Iida H. et al. Endogenous dopamine release induced by repetitive transcranial magnetic stimulation over the primary motor cortex: an [11C]raclopride positron emission tomography study in anesthetized macaque monkeys. Biol Psychiatry 2004; 55 (05) 484-9.
  • 61 Kim JY, Chung EJ, Lee WY, Shin HY, Lee GH, Choe YS. et al. Therapeutic effect of repetitive transcranial magnetic stimulation in Parkinson’s disease: analysis of [11C] raclopride PET study. Mov Disord 2008; 23 (02) 207-11.
  • 62 Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci 2004; 45 (02) 702-7.
  • 63 Hrobjartsson A, Gotzsche PC. Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. N Engl J Med 2001; 344 (21) 1594-602.
  • 64 Loo CK, Taylor JL, Gandevia SC, McDarmont BN, Mitchell PB, Sachdev PS. Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some “sham” forms active?. Biol Psychiatry 2000; 47 (04) 325-31.
  • 65 Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA. Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry 2001; 49 (05) 460-3.
  • 66 Dollfus S, Lecardeur L, Morello R, Etard O. Placebo Response in Repetitive Transcranial Magnetic Stimulation Trials of Treatment of Auditory Hallucinations in Schizophrenia: A Meta-Analysis. Schizophr Bull. 2015 Jun 18; E-pub.
  • 67 O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z. et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 2007; 62 (11) 1208-16.
  • 68 Rossi S, Ferro M, Cincotta M, Ulivelli M, Bartalini S, Miniussi C. et al. A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS). Clin Neurophysiol 2007; 118 (03) 709-16.
  • 69 Mennemeier M, Triggs W, Chelette K, Woods A, Kimbrell T, Dornhoffer J. Sham Transcranial Magnetic Stimulation Using Electrical Stimulation of the Scalp. Brain Stimul 2009; 02 (03) 168-73.
  • 70 Arana AB, Borckardt JJ, Ricci R, Anderson B, Li X, Linder KJ. et al. Focal electrical stimulation as a sham control for repetitive transcranial magnetic stimulation: Does it truly mimic the cutaneous sensation and pain of active prefrontal repetitive transcranial magnetic stimulation?. Brain Stimul 2008; 01 (01) 44-51.
  • 71 Zunhammer M, Busch V, Griesbach F, Landgrebe M, Hajak G, Langguth B. rTMS over the cerebellum modulates temperature detection and pain thresholds through peripheral mechanisms. Brain Stimul 2011; 04 (04) 210-7. e1.
  • 72 Okabe S, Ugawa Y, Kanazawa I. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov Disord 2003; 18 (04) 382-8.
  • 73 Tamura Y, Okabe S, Ohnishi T, D NS Arai N, Mochio S. et al. Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin. Pain 2004; 107 (1–2): 107-15.
  • 74 Colloca L, Benedetti F. How prior experience shapes placebo analgesia. Pain 2006; 124 (1–2): 126-33.
  • 75 Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia – imaging a shared neuronal network. Science 2002; 295 (5560): 1737-40.
  • 76 Benedetti F, Mayberg HS, Wager TD, Stohler CS, Zubieta JK. Neurobiological mechanisms of the placebo effect. J Neurosci 2005; 25 (45) 10390-402.
  • 77 Andre-Obadia N, Magnin M, Garcia-Larrea L. On the importance of placebo timing in rTMS studies for pain relief. Pain 2011; 152 (06) 1233-7.
  • 78 Rossi S, De Capua A, Ulivelli M, Bartalini S, Falzarano V, Filippone G. et al. Effects of repetitive transcranial magnetic stimulation on chronic tinnitus: a randomised, crossover, double blind, placebo controlled study. J Neurol Neurosurg Psychiatry 2007; 78 (08) 857-63.
  • 79 Lefaucheur JP, Andre-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125 (11) 2150-206.
  • 80 Brainin M, Barnes M, Baron JC, Gilhus NE, Hughes R, Selmaj K. et al. Guidance for the preparation of neurological management guidelines by EFNS scientific task forces – revised recommendations 2004. Eur J Neurol 2004; 11 (09) 577-81.