Osteologie 2014; 23(03): 173-178
DOI: 10.1055/s-0037-1622015
Osteoimmunologie
Schattauer GmbH

Entzündung und Knochenabbau

Rheumatoide ArthritisInflammation and new bone resorptionRheumatoid arthritis
P. Pietschmann
1   Institut für Pathophysiologie und Allergieforschung, Zentrum für Pathophysiologie, Infektiologie und Immunologie, Medizinische Universität Wien, Österreich
,
U. Föger-Samwald
1   Institut für Pathophysiologie und Allergieforschung, Zentrum für Pathophysiologie, Infektiologie und Immunologie, Medizinische Universität Wien, Österreich
,
I. Ellinger
1   Institut für Pathophysiologie und Allergieforschung, Zentrum für Pathophysiologie, Infektiologie und Immunologie, Medizinische Universität Wien, Österreich
,
K. Kerschan-Schindl
2   Universitätsklinik für Physikalische Medizin und Rehabilitation, Medizinische Universität Wien, Österreich
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 03. Juni 2014

angenommen: 18. Juni 2014

Publikationsdatum:
02. Januar 2018 (online)

Zusammenfassung

Die rheumatoide Arthritis zählt zu den häufigsten Autoimmunerkrankungen und ist der Prototyp einer osteoimmunen Erkrankung. Zu den Knochenmanifestationen der Erkrankungen gehören Erosionen und die systemische Osteoporose. In Tiermodellen und klinischen Studien wurde gezeigt, dass bei der rheumatoiden Arthritis die Knochendestruktion im Wesentlichen durch eine exzessive Osteoklastenaktivität zustande kommt. Proinflammatorische Zytokine spielen bei der Zerstörung von entzündeten Gelenken eine wichtige Rolle; bei der rheumatoiden Arthritis steigern RANKL, Tumornekrosefaktor-, Interleukin-1, Interleukin-6 und Interleukin-17 die Generation und Aktivierung von Osteoklasten und propagieren so die Knochendestruktion. Neueste Ergebnisse sprechen dafür, dass Antikörper gegen citrullinierte Peptide direkt die Knochenresorption aktivieren könnten. Im Gegensatz zur Knochenresorption ist die Knochenformation im Bereich der Erosionen meist supprimiert. Dies wird durch Antagonisten des Wnt-Signaltransduktionsweges (z. B. Dickkopf-1) mediiert. Die Osteoimmunologie zeigt somit neue therapeutische Ansatzpunkte für zukünftige Behandlungsstrategien der rheumatoiden Arthritis auf.

Summary

Rheumatoid arthritis is among the most frequent autoimmune diseases and is a prototype of an osteoimmune disease. Bone manifestations of the disease include erosions and systemic osteoporosis. Animal models and clinical studies consistently demonstrate that bone destruction in rheumatoid arthritis is predominantly due to excessive osteoclast activity. Proinflammatory cytokines play an important role in the destruction of inflamed joints; in rheumatoid arthritis RANKL, tumour necrosis factor-, interleukin-1, interleukin-6 and interleukin-17 increase osteoclast generation and activation and thus mediate bone destruction. Recent data suggest that antibodies against citrullinated peptides directly induce bone resorption. In contrast to bone resorption, bone formation at the sites of erosions typically is suppressed; this is mediated by antagonists of the wnt pathway, e. g. an upregulation of dickkopf-1. Targeting osteoimmune pathways thus appears to be a promising future treatment strategy for rheumatoid arthritis.

 
  • Literatur

  • 1 Shah A, St Clair EW. Rheumatoid Arthritis. In: Longo DL, Fauci AS, Kasper DL. et al. eds. Harrison’s Principles of Internal Medicine. New York: Mc Graw Hill Medical; 2012: 2738-2752.
  • 2 Goldring SR. Inflammation-Induced Bone Loss in the Rheumatic Diseases. In: Rosen CJ. Hrsg. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Hoboken, USA: Wiley-Blackwell ASBMR; 2013: 482-488.
  • 3 Kim SY, Schneeweiss S, Liu J. et al. Risk of osteoporotic fracture in a large population-based cohort of patients with rheumatoid arthritis. Arthritis Research & Therapy 2010; 12: R154.
  • 4 Geusens P, Lems WF. Osteoimmunology and osteoporosis. Arthritis Research & Therapy 2011; 13: 242.
  • 5 Lernbass I, Wutzl A, Grisar J. et al. Quantitative ultrasound in the assessment of bone status of patients suffering from rheumatic diseases. Skeletal Radiol 2002; 31: 270-276.
  • 6 Brennan SL, Toomey L, Kotowicz MA. et al. Rheumatoid arthritis and incident fracture in women: a case-control study. BMC Musculoskeletal Disorders 2014; 15: 13.
  • 7 Solomon DH, Finkelstein JS, Shadick N. et al. The relationship between focal erosions and generalized osteoporosis in postmenopausal women with rheumatoid arthritis. Arthritis Rheum 2009; 60: 1624-1631.
  • 8 Pye SR, Adams JE, Ward KA. et al. Disease activity and severity in early inflammatory arthritis predict hand cortical bone loss. Rheumatology 2010; 49: 1943-1948.
  • 9 Rauner M, Sipos W, Thiele S, Pietschmann P. Advances in Osteoimmunology: Pathophysiologic concepts and treatment opportunities. Int Arch Allergy Immunol 2013; 160: 114-125.
  • 10 Kölliker A. Die normale Resorption des Knochengewebes und ihre Bedeutung für die Entstehung der typischen Knochenformen. 1873. FCW Vogel, Leipzig.;
  • 11 Mallory FB. Giant cell sarcoma. J Med Res 1911; 24: 463-468.
  • 12 Hancox NM. On the occurence in vitro of cells resembling osteoclasts. J Physiol 1946; 105: 66-71.
  • 13 Loutit JF, Nisbet NW. The origin of osteoclasts. Immunobiol 1982; 161: 193-203.
  • 14 Udagawa N, Takahashi N, Akatsu T. et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 1990; 87: 7260-7264.
  • 15 Yashuda H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis inhibitory factor and is identical to TRANCE/ RANKL. Proc Natl Acad Scie USA 1998; 96: 3597-3602.
  • 16 Lacey DL. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165-176.
  • 17 Nakagawa N. et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 1998; 253: 395-400.
  • 18 Kong YY, Yoshida H, Sarosi I. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315-323.
  • 19 Boyle WJ, Simonet S, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423: 337-342.
  • 20 Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK System for bone and vasular diseases. JAMA 2004; 292: 490-495.
  • 21 Hofbauer LC, Lacey DL, Dunstan CR. et al. Interleukin-1β and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999; 25: 255-259.
  • 22 Lam J, Takeshita S, Barker JE. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000; 106: 1481-1488.
  • 23 Bertolini DR, Nedwin GE, Bringman TS. et al. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 1986; 319: 516-518.
  • 24 Thomson BM, Mundy GR, Chambers TJ. Tumor necrosis factors α and β induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 1987; 138: 775-779.
  • 25 Lorenzo J. Cytokines and the Pathogenesis of Osteoporosis. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA. eds. Osteoporosis. Amsterdam: Elsevier; 2013: 915-937.
  • 26 Balga R, Wetterwald A, Portenier J. et al. Tumor necrosis factor-α: Alternative role as an inhibitor of osteoclast formation in vitro. Bone 2006; 39: 325-335.
  • 27 Atanga E, Dolder S, Dauwalder T. et al. TNFα inhibits the development of osteoclasts through osteoblast-derived GM-CSF. Bone 2011; 49: 1090-1100.
  • 28 Lorenzo JA, Sousa S, Alander C. et al. Comparison of the bone-resorbing activity in the supernatants from phytohemagglutinin-stimulated human peripheral blood mono-nuclear cells with that of cytokines through the use of an antiserum to interleukin 1. Endocrinol 1987; 121: 1164-1170.
  • 29 Sabatini M, Boyce B, Aufdemorte T. et al. Infusions of recombinant human interleukins 1 α and 1 β cause hypercalcemia in normal mice. Proc Natl Acad Sci USA 1988; 85: 5235-5239.
  • 30 Lowik CW, van der Pluijm G, Bloys H. et al. Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenetic cells: a possible role of interleukin-6 in osteoclastogeneis. Biochem Biophys Res Commun 1989; 162: 1546-1552.
  • 31 Yoshitake F, Itoh S, Narita H. et al. IL-6 directly inhibits osteoclast differentiation by suppressing rank signaling pathways. J Biol Chem 2008; 283: 11535-11540.
  • 32 Al-Humidan A, Ralston SH, Hughes DE. et al. Interleukin-6 does not stimulate bone resorption in neonatal mouse calvariae. J Bone Miner Res 1991; 06: 3-7.
  • 33 Furst DE, Emery P. Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. Rheumatology. 2014 Jan 8. [epub ahead of print].
  • 34 Li X, Yuan FL, Lu WG. et al. The role of interleukin-17 in mediating joint destruction in rheumatoid arthritis. Biochem Biophys Res Comm 2010; 397: 131-135.
  • 35 Van den Berg WB, McInnes IB. TH17 cells and IL-17-Focus on immunopathogenesis and immunotherapeutics. Seminars in Arthritis and Rheumatism 2013; 43: 158-170.
  • 36 Kwok SK, Cho ML, Park MK. et al. Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum 2012; 64: 740-751.
  • 37 Kleyer A, Finzel S, Rech J. et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 2014; 73: 854-860.
  • 38 Harre U, Georgess D, Bang H. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 2012; 122: 1791-1802.
  • 39 Harre U, Kittan NA, Schett G. Autoantibodymediated bone loss. Curr Osteoporos Rep 2014; 12: 17-21.
  • 40 Hu Y, Cheng W, Cai W. et al. Advances in research on animal models of rheumatoid arthritis. Clin Rheumatol 2013; 32: 161-165.
  • 41 Szekanecz Z, Halloran MM, Volin MV. et al. Temporal expression of inflammatory cytokines and chemokines in rat adjuvant-induced arthritis. Arthritis Rheum 2000; 43: 1266-1277.
  • 42 Lubberts E, Oppers-Walgreen B, Pettit AR. et al. Increase in expression of receptor activator of nuclear factor κB at sites of bone erosion correlates with progression of inflammation in evolving collagen-induced arthritis. Arthritis Rheum 2002; 46: 3055-3064.
  • 43 Lubberts E, van den Bersselaar L, Oppers-Walgreen B. et al. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-κB ligand/osteoproteger-in balance. J Immunol 2003; 170: 2655-2662.
  • 44 Lubberts E, Koenders MI, Oppers-Walgreen B. et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collageninduced arthritis reduces joint inflammation, cartilage destruction and bone erosion. Arthritis Rheum 2004; 50: 650-659.
  • 45 Redlich K, Hayer S, Maier A. et al. Tumor necrosis factor α-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum 2002; 46: 785-792.
  • 46 Redlich K, Hayer S, Ricci R. et al. Osteoclasts are essential for TNF-α-mediated joint destruction. J Clin Invest 2002; 110: 1419-1427.
  • 47 Hayer S, Redlich K, Korb A. et al. Tenosynovitis and osteoclast formation as the initial preclinical changes in a murine model of inflammatory arthritis. Arthritis Rheum 2007; 56: 79-88.
  • 48 Diarra D, Stolina M, Polzer K. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13: 156-163.
  • 49 Matzelle MM, Gallant MA, Condon KW. et al. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum 2012; 64: 1540-1550.
  • 50 Pietschmann P, Machold KP, Wolosczuk W, Smolen S. Serum osteocalcin concentrations in patients with rheumatoid arthritis. Ann Rheum Dis 1989; 48: 654-657.
  • 51 Deodhar AA, Woolf AD. Bone mass measurement and bone metabolism in rheumatoid arthritis: A review. Br J Rheum 1996; 35: 309-322.
  • 52 Wislowska M, Jakubicz D, Stepieri K. et al. Serum concentrations of formation (PINP) and resorption (Ctx) bone turnover markers in rheumatoid arthritis. Rheumatol Int 2009; 29: 1403-1409.
  • 53 Van Tuyl LHD, Voskuyl AE, Boers M. et al. Baseline RANKL: OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann Rheum Dis 2010; 69: 1623-1628.
  • 54 Nabil MFrahat, Yanni G, Poston R, Panayi GS. Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis, Annals of the Diseases. 1993; 52: 870-875.
  • 55 Pettit AR, Walsh C, Manning C. et al. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology 2006; 45: 1068-1076.
  • 56 Page G, Miossec P. RANK and RANKL expression as markers of denditric cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum 2005; 52: 2307-2312.
  • 57 Revu S, Neregard P, Klint E. et al. Synovial membrane immunohistology in early-untreated rheumatoid arthritis reveals high expression of catabolic bone markers that is modulated by methotrexate. Arthritis Res Ther 2013; 15: R205.
  • 58 Poubelle PE, Chakravarti A, Fernandes MJ. et al. Differential expression of RANK, RANK-L and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by health human blood neutrophils. Arthritis Res Ther 2007; 09: R25.
  • 59 Cohen SB, Dore RK, Lane NE. et al. Denosumab rheumatoid arthritis study group.; Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 2008; 58: 1299-1309.