Osteologie 2014; 23(03): 207-211
DOI: 10.1055/s-0037-1620051
Original and review articles
Schattauer GmbH

Gene expression analysis of metabolic markers during bone regeneration in a rat model

Genexpressionsanalysen von Stoffwechsel-markern bei der Knochenregeneration im Rattenmodell
A. Jonitz-Heincke
1   Department of Orthopaedics, University Medicine Rostock, Germany
,
C. Kasch
1   Department of Orthopaedics, University Medicine Rostock, Germany
,
A. Osterberg
1   Department of Orthopaedics, University Medicine Rostock, Germany
2   Department of Immunology, University Medicine Rostock, Germany
,
Thordis Granitzka
1   Department of Orthopaedics, University Medicine Rostock, Germany
,
T. Lindner
1   Department of Orthopaedics, University Medicine Rostock, Germany
,
M. Haenle
1   Department of Orthopaedics, University Medicine Rostock, Germany
,
R. Bader
1   Department of Orthopaedics, University Medicine Rostock, Germany
,
R. Skripitz
1   Department of Orthopaedics, University Medicine Rostock, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 13. Juni 2013

accepted after revision: 03. Juni 2014

Publikationsdatum:
02. Januar 2018 (online)

Summary

The RANK/RANKL/OPG system plays an important role in the regulation of bone metabolism and bony integration around implants. The aim of this study was to analyse gene expression of OPG, RANK, and RANKL in regenerating bone during implant integration. Additionally, the effect of intermittent para - thyroid hormone (PTH) treatment was analysed. A titanium chamber was implanted in the proximal tibiae of 48 female rats. The animals received either human PTH or saline solution (NaCl). After 21 and 42 days, RNA was isolated from tissue adjacent to the implant and expression of RANK, RANKL, and OPG was analysed. After 21 days, very low expression levels of all genes were shown. In contrast, increased gene expression after 42 days was determined. Expression of RANK and RANKL was lower than that for OPG. The lower expression levels after 21 days might be due to still ossifying, fibrotic tissue around the titanium chamber. An increased OPG synthesis rate associated with decreased RANKL expression after 42 days revealed bone-forming processes. Despite significant differences in gene expression between the time points, only slight differences were observed between application of intermittent PTH and NaCl after a period of 42 days.

Zusammenfassung

Das RANK/RANKL/OPG-System spielt für den Knochenstoffwechsel und die Knochenreparatur eine wichtige Rolle. In dieser Studie sollte die Expression von OPG, RANK und RANKL im regenerierenden Knochen während der Implantatintegration analysiert werden. Zusätzlich wurde der Effekt von intermittierendem PTH im regenerierenden Knochen untersucht. In die proximale Tibia von 48 weiblichen Ratten wurde eine Knochenkammer aus Titan implantiert. Anschließend erhielten die Tiere entweder humanes PTH oder NaCl. Für die Genexpressionsanalysen wurde die RNS aus dem periimplantären Gewebe isoliert. Nach 21 Tagen konnte nur eine geringe Genexpression nachgewiesen werden. Nach 42 Tagen zeigte sich eine gesteigerte Gen - expression, wobei die Expression für RANK und RANKL niedriger und für OPG deutlich erhöht war. Der Grund für die geringe Gen - expression nach 21 Tagen könnte noch zu ossifizierendes, fibrotisches Gewebe um das Implantat sein, wohingegen die erhöhte OPG-Synthese sowie die reduzierte RANKLExpression nach 42 Tagen auf eine Knochenneubildung hindeuten. Obwohl signifikante Expressionsunterschiede zwischen den beiden Zeitpunkten festgestellt wurden, zeigten sich nur geringfügige Unterschiede zwischen der PTH- und NaCl-Gabe nach 42 Tagen.

 
  • References

  • 1 Boyce BF, Xing L. Functions of RANKL/RANK/ OPG in bone modeling and remodeling. Arch Biochem Biophys 2008; 473 (02) 139-146.
  • 2 Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005; 115 (12) 3318-3325.
  • 3 Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423 (6937) 337-342.
  • 4 Kular J, Tickner J, Chim SM, Xu J. An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 2012; 45 (12) 863-873.
  • 5 Suda T, Takahashi N, Udagawa N. et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999; 20 (03) 345-357.
  • 6 Hofbauer LC, Khosla S, Dunstan CR. et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15 (01) 2-12.
  • 7 Gardner CR. Morphological analysis of osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures. Cell Biol Int 2007; 31 (07) 672-682.
  • 8 Fini M, Giavaresi G, Torricelli P. et al. Osteoporosis and biomaterial osteointegration. Biomed Pharmacother 2004; 58 (09) 487-493.
  • 9 Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuronal Interact 2009; 09 (02) 61-71.
  • 10 Flick LM, Weaver JM, Ulrich-Vinther M. et al. Effects of receptor activator of NFkappaB (RANK) signaling blockade on fracture healing. J Orthop Res 2003; 21 (04) 676-684.
  • 11 Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003; 67 (08) 932-949.
  • 12 Gabet Y, Muller R, Levy J. et al. Parathyroid hormone 1–34 enhances titanium implant anchorage in low-density trabecular bone: a correlative micro-computed tomographic and biomechanical analysis. Bone 2006; 39 (02) 276-282.
  • 13 Aspenberg P, Wermelin K, Tengwall P, Fahlgren A. Additive effects of PTH and bisphosphonates on the bone healing response to metaphyseal implants in rats. Acta Orthop 2008; 79 (01) 111-115.
  • 14 Skripitz R, Johansson HR, Ulrich SD. et al. Effect of alendronate and intermittent parathyroid hormone on implant fixation in ovariectomized rats. J Orthop Sci 2009; 14 (02) 138-143.
  • 15 Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1–34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res 1999; 14 (06) 960-968.
  • 16 Manabe T, Mori S, Mashiba T. et al. Human parathyroid hormone (1–34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone 2007; 40 (06) 1475-1482.
  • 17 Black DM, Greenspan SL, Ensrud KE. et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 2003; 349 (13) 1207-1215.
  • 18 Hodsman AB, Bauer DC, Dempster DW. et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 2005; 26 (05) 688-703.
  • 19 Ishizuya T, Yokose S, Hori M. et al. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest 1997; 99 (12) 2961-2970.
  • 20 Iida-Klein A, Zhou H, Lu SS. et al. Anabolic action of parathyroid hormone is skeletal site specific at the tissue and cellular levels in mice. J Bone Miner Res 2002; 17 (05) 808-816.
  • 21 van der Donk S, Buma P, Aspenberg P, Schreurs BW. Similarity of bone ingrowth in rats and goats: a bone chamber study. Comp Med 2001; 51 (04) 336-340.
  • 22 Skripitz R, Andreassen TT, Aspenberg P. Strong effect of PTH (1–34) on regenerating bone: a time sequence study in rats. Acta Orthop Scand 2000; 71 (06) 619-624.
  • 23 Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci 2006; 1092: 385-396.
  • 24 Saika M, Inoue D, Kido S, Matsumoto T. 17betaestradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-alpha. Endocrinology 2001; 142 (06) 2205-2212.
  • 25 Silvestrini G, Ballanti P, Leopizzi M. et al. Effects of the administration of corticosterone, parathyroid hormone, or both, and of their withdrawal, on rat bone and cartilage histomorphometric parameters, and on osteoprotegerin and RANKL mRNA expression and proteins. J Mol Histol 2007; 38 (03) 215-226.
  • 26 Silvestrini G, Ballanti P, Sebastiani M. et al. OPG and RANKL mRNA and protein expressions in the primary and secondary metaphyseal trabecular bone of PTH-treated rats are independent of that of SOST. J Mol Histol 2008; 39 (02) 237-242.
  • 27 Silva I, Branco JC. Rank/Rankl/opg: literature review. Acta Reumatol Port 2011; 36 (03) 209-218.
  • 28 Ogita M, Rached MT, Dworakowski E. et al. Differentiation and Proliferation of Periosteal Osteoblast Progenitors Are Differentially Regulated by Estrogens and Intermittent Parathyroid Hormone Administration. Endocrinology 2008; 149 (11) 5713-5723.