Adipositas - Ursachen, Folgeerkrankungen, Therapie 2015; 09(04): 198-204
DOI: 10.1055/s-0037-1618939
Übersichtsarbeit
Schattauer GmbH

Fruktosereiche Ernährung: Ein Risikofaktor für die Entstehung metabolischer Erkrankungen?

Diets rich in fructose: A risk for developing metabolic diseases?
A. Nier
1   Institut für Ernährungswissenschaften, Lehrbereich Modellsysteme molekularer Ernährungsforschung, Friedrich-Schiller-Universität Jena, Jena
,
V. Winkler
1   Institut für Ernährungswissenschaften, Lehrbereich Modellsysteme molekularer Ernährungsforschung, Friedrich-Schiller-Universität Jena, Jena
,
I. Bergheim
1   Institut für Ernährungswissenschaften, Lehrbereich Modellsysteme molekularer Ernährungsforschung, Friedrich-Schiller-Universität Jena, Jena
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2017 (online)

Zusammenfassung

Sowohl bei Erwachsenen als auch bei Kindern und Jugendlichen ist die Prävalenz von Übergewicht und Adipositas und damit assoziierten Erkrankungen wie Bluthochdruck, Insulinresistenz und nicht-alkoholbedingte Fettlebererkrankung in den letzten Jahrzehnten weltweit deutlich gestiegen. Trotz intensiver Bemühungen sind die Mechanismen, die der Entstehung dieser Adipositas-assoziierten Erkrankungen zugrunde liegen, bislang nicht eindeutig geklärt. Epidemiologische und tierexperimentelle Studien, aber auch Interventionsstudien beim Menschen weisen darauf hin, dass neben einer generellen Überernährung und genetischen Prädispositionen auch eine erhöhte Aufnahme von bestimmten Makronährstoffen wie Fruktose in diesem Kontext von Bedeutung ist. Im vorliegenden Übersichtsartikel werden aktuelle Daten zur Untersuchung des Zusammenhangs von erhöhter Fruktoseaufnahme und Entstehung metabolischer Erkrankungen zusammengefasst.

Die Literatur finden Sie online unter www. adipositas-journal.de

Summary

During the last decades, the prevalence of overweight and obesity and related diseases like hypertension, insulin resistance and nonalcoholic fatty liver disease has increased dramatically among adults, children and adolescents worldwide. Despite intense efforts, mechanisms involved in the development of overweight-associated diseases are not yet fully understood. Results of epidemiological and animal studies but also human intervention studies suggest that besides overnutrition and genetic predispositions, an elevated intake of certain macronutrients like fructose may be critical in this context. Results of recent studies assessing the effect of elevated fructose intake and the development of metabolic diseases are summarized in this review article.

 
  • Literatur

  • 1 Lim SS. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224-2260.
  • 2 De Bruyne RM, Fitzpatrick E, Dhawan A. Fatty liver disease in children: eat now pay later. Hepatology international 2010; 04: 375-385.
  • 3 Guo S. Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. Journal of Endocrinology 2014; 220: T1-T23.
  • 4 U.S.Deparment of Agriculture,U.S.Department of Health and Human Services. Dietary Guidelines for Americans 2010. 2010 online: http://www. cnpp.usda.gov/sites/default/files/dietary_guidelines_for_americans/PolicyDoc.pdf
  • 5 Scuteri A. et al. Metabolic syndrome across Europe: different clusters of risk factors. European journal of preventive cardiology 2015; 22: 486-491.
  • 6 Carnethon MR. et al. Risk Factors for the Metabolic Syndrome The Coronary Artery Risk Development in Young Adults (CARDIA) study, 1985-2001. Diabetes Care 2004; 27: 2707-2715.
  • 7 Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators of inflammation. 2010. 2010
  • 8 Bray GA. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Advances in Nutrition: An International Review Journal 2013; 04: 220-225.
  • 9 World Health Organization. Sugars Intake for Adults and Children. Guideline. World Health Organization; Geneva, Switzerland: 2015
  • 10 World Health Organization. WHO calls on countries to reduce sugars intake among adults and children. 2015. online: http://www.who.int/medi acentre/news/releases/2015/sugar-guideline/en/
  • 11 Volynets V. et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Digestive Diseases and Science 2012; 57: 1932-1941.
  • 12 Kelishadi R, Mansourian M, Heidari-Beni M. Association of fructose consumption and components of metabolic syndrome in human studies: A systematic review and meta-analysis. Nutrition 2014; 30: 503-510.
  • 13 U.S.Deparment of Agriculture. High fructose corn syrup: estimated number of per capita calories consumed daily, by calendar year. 2015. online: http://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables.aspx#25512
  • 14 Deutsche Gesellschaft für Ernährung. 12. Ernährungsbericht. Deutsche Ernährungsgesellschaft. 2012
  • 15 Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutrition reviews 2005; 63: 133-157.
  • 16 Truswell AS, Seach JM, Thorburn AW. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. The American journal of clinical nutrition 1988; 48: 1424-1430.
  • 17 DeBosch BJ. et al. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fed male mice. Molecular Endocrinology 2013; 27: 1887-1896.
  • 18 Shils ME, Shike M. Modern nutrition in health and disease. 10. Auflage. Philadelphia: Lippincott Raven; 2006
  • 19 Spruss A, Bergheim I. Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. The Journal of nutritional biochemistry 2009; 20: 657-662.
  • 20 Tappy L, Lê KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiological reviews 2010; 90: 23-46.
  • 21 Bode C. et al. Adaptive changes of the activity of enzymes involved in fructose metabolism in the liver and jejunal mucosa of rats following fructose feeding. Research in Experimental Medicine 1980; 178: 55-63.
  • 22 Bursac BN. et al. High-fructose diet leads to visceral adiposity and hypothalamic leptin resistance in male rats-do glucocorticoids play a role?. The Journal of nutritional biochemistry 2014; 25: 446-455.
  • 23 Bergheim I. et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. Journal of hepatology 2008; 48: 983-992.
  • 24 Sellmann C. et al. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. The Journal of nutritional biochemistry. 2015
  • 25 Silbernagel G. et al. Effects of 4-week very-highfructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: an exploratory trial. British Journal of Nutrition 2011; 106: 79-86.
  • 26 Aeberli I. et al. Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men A randomized controlled trial. Diabetes Care 2013; 36: 150-156.
  • 27 Stanhope KL. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. The Journal of clinical investigation 2009; 119: 1322-1334.
  • 28 Johnston RD. et al. No difference between highfructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 2013; 145: 1016-1025.
  • 29 Perez-Pozo SE. et al. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. International journal of obesity 2010; 34: 454-461.
  • 30 Volynets V. et al. A moderate weight reduction through dietary intervention decreases hepatic fat content in patients with non-alcoholic fatty liver disease (NAFLD): a pilot study. European journal of nutrition 2013; 52: 527-535.
  • 31 Mueller WM. et al. Evidence That Glucose Metabolism Regulates Leptin Secretion from Cultured Rat Adipocytes 1. Endocrinology 1998; 139: 551-558.
  • 32 Stanhope KL. Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annual review of medicine 2012; 63: 329-343.
  • 33 Basciano H, Federico L, Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & metabolism 2005; 02: 5.
  • 34 Le KA. et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. The American journal of clinical nutrition 2009; 89: 1760-1765.
  • 35 Sodhi K. et al. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet. PloS one. 2015: 10.
  • 36 Mamikutty N. et al. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. Bio Med research international 2014. 2014
  • 37 Schultz A. et al. Differences and similarities in hepatic lipogenesis, gluconeogenesis and oxidative imbalance in mice fed diets rich in fructose or sucrose. Food & function 2015; 06: 1684-1691.
  • 38 Stanhope KL. et al. A dose-response study of consuming high-fructose corn syrupGÇôsweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. The American journal of clinical nutrition 2015; 101: 1144-1154.
  • 39 Bremer AA. et al. Fructose-fed rhesus monkeys: a nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clinical and translational science 2011; 04: 243-252.
  • 40 Kanuri G. et al. Fructose-induced steatosis in mice: role of plasminogen activator inhibitor-1, microsomal triglyceride transfer protein and NKT cells. Lab Invest 2011; 91: 885-895.
  • 41 Kavanagh K. et al. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. The American journal of clinical nutrition 2013; 98: 349-357.
  • 42 Lecoultre V. et al. Coffee consumption attenuates short-term fructose-induced liver insulin resistance in healthy men. The American journal of clinical nutrition 2014; 99: 268-275.
  • 43 Jin R. et al. Dietary fructose reduction improves markers of cardiovascular disease risk in Hispanic-American adolescents with NAFLD. Nutrients 2014; 06: 3187-3201.
  • 44 Roden M. Does endurance training protect from lipotoxicity?. Diabetes 2012; 61: 2397-2399.
  • 45 Klein AV, Kiat H. The mechanisms underlying fructose-induced hypertension: a review. Journal of hypertension 2015; 33: 912-920.
  • 46 Jayalath VH. et al. Total fructose intake and risk of hypertension: a systematic review and meta-analysis of prospective cohorts. Journal of the American College of Nutrition 2014; 33: 328-339.
  • 47 Jayalath VH. et al. Sugar-sweetened beverage consumption and incident hypertension: a systematic review and meta-analysis of prospective cohorts. The American journal of clinical nutrition 2015; 102: 914-921.
  • 48 Brymora A. et al. Low-fructose diet lowers blood pressure and inflammation in patients with chronic kidney disease. Nephrology Dialysis Transplantation 2012; 27: 608-612.
  • 49 Madero M. et al. A pilot study on the impact of a low fructose diet and allopurinol on clinic blood pressure among overweight and prehypertensive subjects: a randomized placebo controlled trial. Journal of the American Society of Hypertension. 2015
  • 50 Blachier M. et al. The burden of liver disease in Europe: a review of available epidemiological data. Journal of hepatology 2013; 58: 593-608.
  • 51 Angulo P. Nonalcoholic fatty liver disease. New England Journal of Medicine 2002; 346: 1221-1231.
  • 52 Fakhoury-Sayegh N. et al. Characteristics of nonalcoholic fatty liver disease induced in wistar rats following four different diets. Nutrition research and practice 2015; 09: 350-357.
  • 53 Spruss A. et al. Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Laboratory Investigation 2012; 92: 1020-1032.
  • 54 Zelber-Sagi S, Ratziu V, Oren R. Nutrition and physical activity in NAFLD: an overview of the epidemiological evidence. World journal of gastroenterology 2011; 17: 3377-3389.
  • 55 Abdelmalek MF. et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51: 1961-1971.
  • 56 Roeb E. et al. S2k-Leitlinie nicht alkoholische Fettlebererkrankungen. Zeitschrift f++r Gastroenterologie 2015; 53: 668-723.
  • 57 Lyssiotis CA, Cantley LC. Metabolic syndrome: F stands for fructose and fat. Nature 2013; 502: 181-182.
  • 58 Yoon Hj, Cha BS. Pathogenesis and therapeutic approaches for non-alcoholic fatty liver disease. World journal of hepatology 2014; 06: 800-811.