Adipositas - Ursachen, Folgeerkrankungen, Therapie 2011; 05(04): 183-187
DOI: 10.1055/s-0037-1618756
Lipide und Ernährungstherapie
Schattauer GmbH

Rotwein und Fettzellen?

Effekte von ResveratrolRed wine and fat cells?Effects of Resveratrol
P. Fischer-Posovszky
1   Sektion Pädiatrische Endokrinologie und Diabetologie, Universitätsklinik für Kinder- und Jugendmedizin Ulm
,
M. Wabitsch
1   Sektion Pädiatrische Endokrinologie und Diabetologie, Universitätsklinik für Kinder- und Jugendmedizin Ulm
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2017 (online)

Zusammenfassung

Resveratrol, ein in Weintrauben und deshalb auch im Rotwein vorkommender Pflanzenstoff, ist neuerdings als vielversprechendes Adipositas-Medikament in aller Munde. Dieses Molekül soll in der Lage sein, die Effekte einer verminderten Kalorienzufuhr molekular zu imitieren. Da eine Kalorienrestriktion beim Menschen in erster Linie zu einem Abbau der Fettdepots führt, war die Idee schnell geboren, das Molekül zur Behandlung von Überge-wicht und Adipositas zu nutzen. In dieser Übersichtsarbeit wird das Molekül Resveratrol vorgestellt und seine anti-obesogene Wirkung kritisch beleuchtet.

Summary

Resveratrol, a natural plant product found in grapes and in red wine, is currently discussed as a new obesity treatment. It is able to mimic the molecular effects of caloric restriction. In humans, caloric restriction primarily leads to a reduction of white adipose tissue depots. Therefore it seemed obvious that resveratrol might exert anti-obesity effects. In this review, we want to introduce this interesting molecule and will discuss its beneficial effects on obesity.

 
  • Literatur

  • 1 WHO. Report of a WHO consultation; Obesity: Preventing and managing a global epidemic. WHO Technical Report Series. 2000 894
  • 2 Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 1993; 341: 454-457.
  • 3 Maron DJ. Flavonoids for reduction of atherosclerotic risk. Curr Atheroscler Rep 2000; 06: 73-78.
  • 4 Nonomura S, Kanagawa H, Makimoto A. Chemical Constituents of Polygonaceous Plants. I. Studies on the Components of Ko-J O-Kon. (Polygonum Cuspidatum Sieb. Et Zucc.). Yakugaku Zasshi 1963; 83: 988-990.
  • 5 Savouret JF, Quesne M. Resveratrol and cancer: a review. Biomed Pharmacother 2002; 56: 84-87.
  • 6 Delmas D, Jannin B, Latruffe N. Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 2005; 49: 377-395.
  • 7 Roy H, Lundy S, Kalicki B. Resveratrol. 2005 Pennington Nutrition Series. 07
  • 8 Dehmelt H. Re-adaptation hypothesis: explaining health benefits of caloric restriction. Med Hypotheses 2004; 62: 620-624.
  • 9 McCay CM. Cellulose in the diet of mice and rats. J Nutr 1934; 08: 435-447.
  • 10 Leibiger IB, Berggren PO. Sirt1: a metabolic master switch that modulates lifespan. Nat Med 2006; 12: 34-36.
  • 11 Picard F, Guarente L. Molecular links between aging and adipose tissue. Int J Obes (Lond) 2005; 29 (Suppl. 01) S36-39.
  • 12 Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 2005; 126: 987-1002.
  • 13 Picard F, Kurtev M, Chung N. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429: 771-776.
  • 14 Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289: 2126-2128.
  • 15 Howitz KT, Bitterman KJ, Cohen HY. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425: 191-196.
  • 16 Wood JG, Rogina B, Lavu S. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004; 430: 686-689.
  • 17 Baur JA, Pearson KJ, Price NL. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444 (7117): 337-342.
  • 18 Lagouge M, Argmann C, Gerhart-Hines Z. et al. 2006 Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1alpha. Cell 2006; 127 (06) 1109-1122.
  • 19 Vang O, Ahmad N, Baile CA. et al. What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS One 2011; 06 (06) e19881.
  • 20 Park HJ, Yang JY, Ambati S. et al. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food 2008; 11: 773-783.
  • 21 Rayalam S, Della-Fera MA, Yang JY. et al. Resveratrol potentiates genistein’s antiadipogenic and proa-poptotic effects in 3T3-L1 adipocytes. J Nutr 2007; 137: 2668-2673.
  • 22 Rayalam S, Yang JY, Ambati S. et al. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res 2008; 22: 1367-1371.
  • 23 Yang JY, Della-Fera MA, Rayalam S. et al. Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 2008; 82: 1032-1039.
  • 24 Floyd ZE, Wang ZQ, Kilroy G, Cefalu WT. Modulation of peroxisome proliferator-activated receptor gamma stability and transcriptional activity in adipocytes by resveratrol. Metabolism 2008; 57: S32-38.
  • 25 Szkudelska K, Nogowski L, Szkudelski T. Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 2009; 113: 17-24.
  • 26 Olholm J, Paulsen SK, Cullberg KB, Richelsen B, Pedersen SB. Anti-inflammatory effect of resveratrol on adipokine expression and secretion in human adipose tissue explants. Int J Obes (Lond) 2010; 34: 1546-1553.
  • 27 Costa SCdos, Rohden F, Hammes TO. et al. Resveratrol upregulated SIRT1, FOXO1, and adiponectin and downregulated PPARgamma1–3 mRNA expression in human visceral adipocytes. Obes Surg 2011; 21: 356-361.
  • 28 Chuang CC, Martinez K, Xie G. et al. Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-{alpha}-mediated inflammation and insulin resistance in primary human adipocytes. Am J Clin Nutr 2010; 92: 1511-1521.
  • 29 Fischer-Posovszky P, Wabitsch M, Hochberg Z. Endocrinology of adipose tissue – an update. Horm Metab Res 2007; 39: 314-321.
  • 30 Straczkowski M, Dzienis-Straczkowska S, Stepien A. et al. Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-alpha system. J Clin Endocrinol Metab 2002; 87: 4602-4606.
  • 31 Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 2001; 09: 414-417.
  • 32 Bruun JM, Verdich C, Toubro S, Astrup A, Richelsen B. Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor-alpha. Effect of weight loss in obese men. Eur J Endocrinol 2003; 148: 535-542.
  • 33 Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116: 1784-1792.
  • 34 Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006; 05: 493-506.
  • 35 Cal C, Garban H, Jazirehi A, Yeh C, Mizutani Y, Bonavida B. Resveratrol and cancer: chemoprevention, apoptosis, and chemo-immunosensitizing activities. Curr Med Chem Anticancer Agents 2003; 03: 77-93.
  • 36 Dong Z. Molecular mechanism of the chemopreventive effect of resveratrol. Mutat Res. 2003 523–524: 145–150.
  • 37 Bowers JL, Tyulmenkov VV, Jernigan SC, Klinge CM. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology 2000; 141: 3657-3667.
  • 38 Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 1997; 94: 14138-14143.
  • 39 Leone S, Cornetta T, Basso E, Cozzi R. Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Lett 2010; 295: 167-172.