Adipositas - Ursachen, Folgeerkrankungen, Therapie 2007; 01(02): 74-78
DOI: 10.1055/s-0037-1618611
Hypertonie bei Adipositas
Schattauer GmbH

Sind Sekretionsprodukte der Fettzellen für die Adipositas-assoziierte Hypertonie verantwortlich?

Role of secreted molecules from fat cells for obesityassociated hypertension
St. Engeli
1   Franz-Volhard-Centrum für Klinische Forschung, Charité Campus Buch, Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
21 December 2017 (online)

Zusammenfassung

Adipozyten bilden eine Vielzahl von Molekülen, die direkt in die kardiovaskuläre Regulation eingreifen können (Angiotensin II, NO, Prostazyklin, nicht veresterte Fettsäuren, Adiponektin, Sauerstoffradikale, Leptin, und adipose-derived relaxing factors) oder indirekt die Aktivität kreislaufregulatorischer Mediatoren beeinflussen (Aldosteron, Kortisol, atriales natriuretisches Peptid, ADMA). Als pathophysiologisches Prinzip bei der Adipositas-assoziierten Hypertonie wird ein komplexes Ungleichgewicht zwischen diesen vielzähligen Fettzellprodukten angenommen, das in gesteigerter vaskulärer Reaktivität, endothelialer Dysfunktion, gesteigerter Sympathikusaktivität und Salzsensitivität resultiert. Die günstige Beeinflussung dieses Ungleichgewichts durch Reduktion des Körpergewichts wurde insbesondere für das Renin-Angiotensin-Aldosteron-System nachgewiesen. Von besonderer Bedeutung für die zukünftige Forschung wird es sein, die spezifische Rolle des perivaskulären Fettgewebes bei der Entstehung der Adipositas-assoziierten Hypertonie aufzuklären, da bislang nur die großen subkutanen und viszeralen Fettgewebedepots untersucht wurden.

Summary

Adipocytes produce a number of molecules with direct vascular activity (e. g. angiotensin II, NO, prostacyclin, nonesterified fatty acids, adiponectin, radical oxygen species, leptin, and adipose-derived relaxing factors). Other adipocyte-derived products indirectly act on vascular regulation by influencing cardiovascular mediators (e. g. aldosterone, cortisol, atrial natriuretic peptide, ADMA). The pathophysiology of obesity-associated hypertension can be explained in part by a complex imbalance between these adipocytederived molecules that leads to enhanced vascular reactivity, endothelial dysfunction, increased activity of the sympathetic nervous system and salt sensitivity. A beneficial effect of weight loss on this imbalance was described especially for the renin-angiotensin-aldosterone system. During the last decade, only the role of large subcutaneous and visceral adipose tissue depots was studied. In the near future, an additional research focus will be on the specific role of perivascular adipose tissue for the development of obesity-associated hypertension.

 
  • Literatur

  • 1 Ayachi SE, Paulmyer-Lacroix O, Verdier M. et al. 11beta-Hydroxysteroid dehydrogenase type 1-driven cortisone reactivation regulates plasminogen activator inhibitor type 1 in adipose tissue of obese women. J Thromb Haemost 2006; 04: 621-627.
  • 2 Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005; 96: 939-949.
  • 3 Boucher J, Masri B, Daviaud D. et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 2005; 146: 1764-1771.
  • 4 Cardillo C, Campia U, Iantorno M, Panza JA. Enhanced vascular activity of endogenous endothelin-1 in obese hypertensive patients. Hypertension 2004; 43: 36-40.
  • 5 Cheng KK, Lam KS, Wang Y. et al. Adiponectininduced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 2007; 56: 1387-1394.
  • 6 Davy KP, Hall JE. Obesity and hypertension: two epidemics or one?. Am J Physiol Regul Integr Comp Physiol 2004; 286: R803-R813.
  • 7 Dayoub H, Achan V, Adimoolam S. et al. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence. Circulation 2003; 108: 3042-3047.
  • 8 De Paula RB, Da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension 2004; 43: 41-47.
  • 9 Egan BM, Hennes MMI, Stepniakowski KT. et al. Obesity hypertension is related more to insulin’s fatty acid than glucose action. Hypertension 1996; 27: 723-728.
  • 10 Egan BM, Lu G, Greene EL. Vascular effects of non-esterified fatty acids: implications for the cardiovascular risk factor cluster. Prostaglandins Leukot Essent Fatty Acids 1999; 60: 411-420.
  • 11 Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A. et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci US A 2003; 100: 14211-14216.
  • 12 Engeli S, Böhnke J, Feldpausch M. et al. Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes Res 2004; 12: 9-17.
  • 13 Engeli S, Böhnke J, Gorzelniak K. et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension 2005; 45: 356-362.
  • 14 Engeli S, Boschmann M, Frings P. et al. Influence of Salt Intake on Renin-Angiotensin and Natriuretic Peptide System Genes in Human Adipose Tissue. Hypertension 2006; 48: 1103-1108.
  • 15 Engeli S, Feldpausch M, Gorzelniak K. et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes 2003; 52: 942-947.
  • 16 Engeli S, Janke J, Gorzelniak K. et al. Regulation of the nitric oxide system in human adipose tissue. J Lipid Res 2004; 45: 1640-1648.
  • 17 Engeli S, Schling P, Gorzelniak K. et al. The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome?. Int J Biochem Cell Biol 2003; 35: 807-825.
  • 18 Fesus G, Dubrovska G, Gorzelniak K. et al. Adiponectin is a novel humoral vasodilator. Cardiovasc Res 2007; 75: 719-727.
  • 19 Gadegbeku CA, Shrayyef MZ, Taylor TP, Egan BM. Mechanism of lipid enhancement of alpha1-adrenoceptor pressor sensitivity in hypertension. J Hypertens 2006; 24: 1383-1389.
  • 20 Galvez B, de Castro J, Herold D. et al. Perivascular adipose tissue and mesenteric vascular function in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 2006; 26: 1297-1302.
  • 21 Gao YJ, Lu C, Su LY. et al. Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br J Pharmacol 2007; 151: 323-331.
  • 22 Goodfriend TL, Ball DL, Egan BM. et al. Epoxyketo derivative of linoleic acid stimulates aldosterone secretion. Hypertension 2004; 43: 358-363.
  • 23 Harte A, McTernan P, Chetty R. et al. Insulin-mediated upregulation of the renin angiotensin system in human subcutaneous adipocytes is reduced by rosiglitazone. Circulation 2005; 111: 1954-1961.
  • 24 Hattori Y, Akimoto K, Gross SS. et al. Angiotensin-II-induced oxidative stress elicits hypoadiponectinaemia in rats. Diabetologia 2005; 48: 1066-1074.
  • 25 Jordan J, Engeli S, Boschmann M. et al. Hemodynamic and metabolic responses to valsartan and atenolol in obese hypertensive patients. J Hypertens 2005; 23: 2313-2318.
  • 26 Jordan J, Engeli S, Boye SW. et al. Direct Renin inhibition with aliskiren in obese patients with arterial hypertension. Hypertension 2007; 49: 1047-1055.
  • 27 Kearney MT, Chowienczyk PJ, Brett SE. et al. Acute haemodynamic effects of lipolysis-induced increase of free fatty acids in healthy men. Clin Sci (Lond) 2002; 102: 495-500.
  • 28 Kielstein JT, Impraim B, Simmel S. et al. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 2004; 109: 172-177.
  • 29 Krug AW, Vleugels K, Schinner S. et al. Human adipocytes induce an ERK1/2 MAP kinases-mediated upregulation of steroidogenic acute regulatory protein (StAR) and an angiotensin II-sensitization in human adrenocortical cells. Int J Obes (Lond). 2007 epub ahead of print..
  • 30 Löhn M, Dubrovska G, Lauterbach B. et al. Periadventitial fat releases a vascular relaxing factor. FASEB J 2002; 16: 1057-1063.
  • 31 Massiera F, Bloch-Faure M, Ceiler D. et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J 2001; 15: 2727-2729.
  • 32 Masuzaki H, Yamamoto H, Kenyon CJ. et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest 2003; 112: 83-90.
  • 33 McLaughlin T, Stuhlinger M, Lamendola C. et al. Plasma asymmetric dimethylarginine concentrations are elevated in obese insulin-resistant women and fall with weight loss. J Clin Endocrinol Metab 2006; 91: 1896-1900.
  • 34 Mikhail N, Golub MS, Tuck ML. Obesity and hypertension. Prog Cardiovasc Dis 1999; 42: 39-58.
  • 35 Ruano M, Silvestre V, Castro R. et al. Morbid obesity, hypertensive disease and the renin-angiotensin-aldosterone axis. Obes Surg 2005; 15: 670-676.
  • 36 Sjöström L, Lindroos AK, Peltonen M. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 2004; 351: 2683-2693.
  • 37 Steinberg HO, Tarshoby M, Monestel R. et al. Elevated circulating free fatty acid levels impair endotheliumdependent vasodilation. J Clin Invest 1997; 100: 1230-1239.
  • 38 Tomlinson JW, Stewart PM. Mechanisms of disease: Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 asa novel treatment for the metabolic syndrome. Nat Clin Pract Endocrinol Metab 2005; 01: 92-99.
  • 39 Tuck ML, Sowers J, Dornfeld L. et al. The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients. N Engl J Med 1981; 304: 930-933.
  • 40 Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature 2006; 444: 875-880.