Thromb Haemost 2001; 86(04): 995-999
DOI: 10.1055/s-0037-1616523
Special Article
Schattauer GmbH

Metabolic Changes in Human CD36 Deficiency Displayed by Glucose Loading

Hidekatsu Yanai
1   Departments of Laboratory Medicine, Sapporo
2   Pediatrics, Hokkaido University School of Medicine, Sapporo
,
Hitoshi Chiba
1   Departments of Laboratory Medicine, Sapporo
,
Hironobu Fujiwara
1   Departments of Laboratory Medicine, Sapporo
2   Pediatrics, Hokkaido University School of Medicine, Sapporo
,
Mie Morimoto
3   College of Medical Technology, Hokkaido University, Sapporo
,
Yukihiro Takahashi
1   Departments of Laboratory Medicine, Sapporo
2   Pediatrics, Hokkaido University School of Medicine, Sapporo
,
Shu-Ping Hui
4   Faculty of Pharmaceutical Sciences, the Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
,
Hirotoshi Fuda
1   Departments of Laboratory Medicine, Sapporo
,
Harukuni Akita
1   Departments of Laboratory Medicine, Sapporo
,
Takao Kurosawa
4   Faculty of Pharmaceutical Sciences, the Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
,
Kunihiko Kobayashi
2   Pediatrics, Hokkaido University School of Medicine, Sapporo
,
Kazuhiko Matsuno
3   College of Medical Technology, Hokkaido University, Sapporo
› Author Affiliations
Further Information

Publication History

Received 02 February 2001

Accepted after resubmission 14 May 2001

Publication Date:
09 December 2017 (online)

Summary

Previous in vitro studies have shown that CD36 participates in cellular fatty acid (FA) uptake. In vivo evidence for a physiologic role of CD36 in this process is poor and mostly obtained in animals. To examine the metabolic role of human CD36, we performed a glucose loading test for normals (n = 16) and subjects with CD36 deficiency, both Type I (n = 5) and Type II (n = 16). After 30 min, FA levels had fallen by 60.1% in normals but by only 31.7% in Type II deficiency (P <0.01 vs. normals) and 16.5% in Type I deficiency which remained significantly higher than the other two groups out to 2 h. Further, changes in triglyceride and glucose metabolism were observed in the both types of CD36 deficiency. Impaired fast FA clearance by muscle and consequently increased hepatic FA uptake seem to underlie these changes. We conclude that human CD36 deficiency causes systemic metabolic changes.

 
  • References

  • 1 Luiken JJ, Schaap FG, van Nieuwenhoven FA, van der Vusse GJ, Bonen A, Glatz JF. Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins. Lipids 1999; 34: 169-75.
  • 2 Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membrane. Proc Natl Acad Sci USA 1985; 82: 4-8.
  • 3 Abumrad NA, El Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA. Expression cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation: Homology with human CD36. J Biol Chem 1993; 268: 17665-8.
  • 4 Schaffer JE, Lodish HF. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 1994; 79: 427-36.
  • 5 Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF, Silverstein RL. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem 1999; 274: 19055-62.
  • 6 Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, Cameron R, Abumrad NA. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem 1999; 274: 26761-6.
  • 7 Tanaka T, Sohmiya K, Kawamura K. Is CD36 deficiency an etiology of hereditary hypertrophic cardiomyopathy?. J Mol Cell Cardiol 1997; 29: 121-7.
  • 8 Fukuchi K, Nozaki S, Yoshizumi T, Hasegawa S, Uehara T, Nakagawa T, Kobayashi T, Tomiyama Y, Yamashita S, Matsuzawa Y, Nishimura T. Enhanced myocardial glucose use in patients with a deficiency in long-chain fatty acid transport (CD36 deficiency). J Nucl Med 1998; 40: 239-43.
  • 9 Van Nieuwenhoven FA, Verstijnen CP, Abumrad NA, Willemsen PH, Van Eys GJ, Van der Vusse GJ, Glatz JF. Putative membrane fatty acid translo-case and cytoplasmic acid-binding protein are co-expressed in rat heart and skeletal muscles. Biochem Biophys Res Commun 1995; 207: 747-52.
  • 10 Van Nieuwenhoven FA, Willemsen PH, Van der Vusse GJ, Glatz JF. Co-expression in rat heart and skeletal muscle of four genes coding for proteins implicated in long-chain fatty acid uptake. Int J Biochem Cell Biol 1999; 31: 489-98.
  • 11 Kashiwagi H, Tomiyama Y, Honda S, Kosugi S, Shiraga M, Nagao N, Sekiguchi S, Kanayama Y, Kurata Y, Matsuzawa Y. Molecular basis of CD36 deficiency. J Clin Invest 1995; 95: 1040-6.
  • 12 Kashiwagi H, Tomiyama Y, Kosugi S, Shiraga M, Lipsky RH, Kanayama Y, Kurata Y, Matsuzawa Y. Identification of molecular defects in a subject with type I CD36 deficiency. Blood 1994; 83: 3545-52.
  • 13 Kashiwagi H, Tomiyama Y, Nozaki S, Honda S, Kosugi S, Shiraga M, Nakagawa T, Nagao N, Kanakura Y, Kurata Y, Matsuzawa Y. A single nucleotide insertion in codon 317 of the CD36 gene leads to CD36 deficiency. Arterioscler Thromb Vasc Biol 1996; 16: 1026-32.
  • 14 Yamamoto N, Akamatsu H, Sakuraba H, Yamazaki H, Tanoue K. Platelet glycoprotein IV (CD36) deficiency is associated with the presence (type II) or the absence (type I) of glycoprotein IV on monocytes. Blood 1994; 83: 392-7.
  • 15 Yanai H, Chiba H, Fujiwara H, Morimoto M, Abe K, Yoshida S, Takahashi Y, Fuda H, Hui SP, Akita H, Kobayashi K, Matsuno K. Phenotype-geno-type correlation in CD36 deficiency type I and II. Thromb Haemost 2000; 84: 436-41.
  • 16 Coppack SW, Frayn KN, Humphreys SM, Dhar H, Hockaday TD. Effects of insulin on human adipose tissue metabolism in vivo. Clinical Science 1989; 77: 663-70.
  • 17 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologica 1985; 28: 412-9.
  • 18 Ibrahimi A, Sfeir Z, Magharaie H, Amri EZ, Grimaldi P, Abumrad NA. Expression of the CD36 homolog (FAT) in fibroblast cells: Effects on fatty acid transport. Proc Natl Acad Sci USA 1996; 93: 2646-51.
  • 19 Chan BL, Lisanti MP, Rodriguez-Boulan E, Saltiel AR. Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Science 1988; 241: 1670-2.
  • 20 Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St Lezin E, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genet 1999; 21: 76-83.
  • 21 Gotoda T, Iizuka Y, Kato N, Osuga J, Bihoreau MT, Murakami T, Yamori Y, Shimano H, Ishibashi S, Yamada N. Absence of Cd36 mutation in the original spontaneously hypertensive rats with insulin resistance. Nature Genet 1999; 22: 226-8.
  • 22 Yanai H, Chiba H, Morimoto M, Jamieson GA, Matsuno K. Type I CD36 deficiency in humans is not associated with insulin resistance syndrome. Thromb Haemost 2000; 83: 786.
  • 23 Kruszynska YT, Mulford MI, Yu JG, Armstrong DA, Olefsky JM. Effects of nonesterified fatty acids on glucose metabolism after glucose ingestion. Diabetes 1997; 46: 1586-93.
  • 24 Yanai H, Chiba H, Morimoto M, Abe K, Fujiwara H, Fuda H, Hui SP, Takahashi Y, Akita H, Jamieson GA, Kobayashi K, Matsuno K. Human CD36 deficiency is associated with elevation in low-density lipoproteincholesterol. Am J Med Gen 2000; 93: 299-304.