Thromb Haemost 2001; 86(02): 596-603
DOI: 10.1055/s-0037-1616092
Review Article
Schattauer GmbH

A Factor VIII Minigene Comprising the Truncated Intron I of Factor IX Highly Improves the In Vitro Production of Factor VIII

Jean-Luc Plantier
1   INSERM U331, Laboratoire d’Hémobiologie-Faculté de Médecine RTH Laënnec, Lyon, France
,
Marie-Hélène Rodriguez
1   INSERM U331, Laboratoire d’Hémobiologie-Faculté de Médecine RTH Laënnec, Lyon, France
,
Nathalie Enjolras
1   INSERM U331, Laboratoire d’Hémobiologie-Faculté de Médecine RTH Laënnec, Lyon, France
,
Olivier Attali
1   INSERM U331, Laboratoire d’Hémobiologie-Faculté de Médecine RTH Laënnec, Lyon, France
,
Claude Négrier
1   INSERM U331, Laboratoire d’Hémobiologie-Faculté de Médecine RTH Laënnec, Lyon, France
› Author Affiliations
Further Information

Publication History

Received 17 August 2000

Accepted after resubmission 15 February 2001

Publication Date:
12 December 2017 (online)

Summary

The biosynthesis of coagulation factor VIII (FVIII) is hampered by successive controls that limit its production. To improve this production, a truncated intron I sequence of factor IX (TFIXI1) was inserted in FVIII cDNA in place of FVIII introns 1, 12 and 13 and also as a combination between introns 1 and 12, and introns 1 and 13. The intron 12 and 13 locations were targeted because this region was previously shown to contain a transcriptional silencer. The expression of FVIII in CHO and HepG2 cells revealed important variations in the properties of the minigenes depending on the TFIXI1 insertion sites. In FVIII intron 13 location the TFIXI1 seemed to diminish the transcriptional silencer activity, whereas it was poorly spliced in intron 12 position. Among the five constructs, FVIII I1+13 leaded to a significant improvement in FVIII secretion (13 times) that was associated with a dramatic intracellular accumulation in cells. Therefore, the FVIII I1+13 minigene could represent a particular interest to produce recombinant FVIII in vitro as well as in the aim of gene therapy of haemophilia A.

 
  • References

  • 1 Gitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, Vehar GA, Capon DJ, Lawn RM. Characterization of the human factor VIII gene. Nature 1984; 312: 326-30.
  • 2 Toole JJ, Knopf JL, Wozney JM, Sultzman LA, Buecker JL, Pittman DD, Kaufman RJ, Brown E, Shoemaker C, Orr EC, Amphlett GF, Foster B, Coe ML, Knutson GJ, Fass DN. R.M. H. Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 1984; 312: 342-7.
  • 3 Vehar GA, Keyt B, Eaton D, Rodriguez H, O’Brien DP, Rotblat F, Opper-mann H, Keck R, Wood WI, Harkins RN, Tuddenham EGD, Lawn RM, Capon DJ. Structure of Human Factor VIII. Nature 1984; 312: 337-42.
  • 4 Antonarakis SE. Molecular genetics of coagulation factor VIII gene and hemophilia A. Thromb Haemost 1995; 74: 322-8.
  • 5 Tuddenham EG, Schwaab R, Seehafer J, Millar DS, Gitschier J, Higuchi M, Bidichandani S, Connor JM, Hoyer LW, Yoshioka A. et al. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition [corrected and republished article originally printed in Nucleic Acids Res 1994 Sep; 22 (17): 3511-33]. Nucleic Acids Res 1994; 22: 4851-68.
  • 6 Ewatt BL. Prions and haemophilia: assessment of risk. Haemophilia 1998; 4: 628-33.
  • 7 Ludlam CA. Viral safety of plasma-derived factor VIII and IX concentrates. Blood Coagul Fibrinolysis 1997; 8: 19-23.
  • 8 Kay MA, High K. Gene therapy for the hemophilias [comment]. Proc Natl Acad Sci USA 1999; 96: 9973-5.
  • 9 Hoeben RC, Fallaux FJ, Cramer SJ, van den Wollenberg DJ, van Ormondt H, Briët E, van der Eb AJ. Expression of the blood-clotting factor-VIII cDNA is repressed by a transcriptional silencer located in its coding region. Blood 1995; 85: 2447-54.
  • 10 Fallaux FJ, Hoeben RC, Cramer SJ, van den Wollenberg DJ, Briët E, van Ormondt H, van Der Eb AJ. The human clotting factor VIII cDNA contains an autonomously replicating sequence consensus- and matrix attachment region-like sequence that binds a nuclear factor, represses heterologous gene expression, and mediates the transcriptional effects of sodium butyrate. Mol Cell Biol 1996; 16: 4264-72.
  • 11 Koeberl DD, Halbert CL, Krumm A, Miller AD. Sequences within the coding regions of clotting factor VIII and CFTR block transcriptional elongation. Hum Gene Ther 1995; 6: 469-79.
  • 12 Lynch CM, Israel DI, Kaufman RJ, Miller AD. Sequences in the coding region of clotting factor VIII act as dominant inhibitors of RNA accumulation and protein production. Hum Gene Ther 1993; 4: 259-72.
  • 13 Marquette KA, Pittman DD, Kaufman RJ. A 110-amino acid region within the A1-domain of coagulation factor VIII inhibits secretion from mammalian cells. J Biol Chem 1995; 270: 10297-303.
  • 14 Nichols WC, Seligsohn U, Zivellin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri H-P, Ciavarella N, Kaufman RJ, Ginsburg D. Mutations in the ER-Golgi Intermediate Compartment Protein ERGIC-53 Cause Combined Deficiency of Coagulation Factors V and VIII. Cell 1998; 93: 61-70.
  • 15 Pipe SW, Morris JA, Shah J, Kaufman RJ. Differential Interaction of Coagulation Factor VIII and Factor V with Protein Chaperones Calnexin and Calreticulin. J Biol Chem 1998; 273: 8567-44.
  • 16 Kaufman RJ, Wasley LC, Davies MV, Wise RJ, Israel DI, Dorner AJ. Effects of von Willebrand Factor Coexpression on the Synthesis and Secretion of Factor VIII in Chinese Hamster Ovary Cells. Mol Cell BIol 1989; 9: 1233-42.
  • 17 Lenting PJ, Neels JG, van den Berg BM, Clijsters PP, Meijerman DW, Pannekoek H, van Mourik JA, Mertens K, van Zonneveld AJ. The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J Biol Chem 1999; 274: 23734-9.
  • 18 Saenko EL, Yakhyaev AV, Mikhailenko I, Strickland DK, Sarafanov AG. Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J Biol Chem 1999; 274: 37685-92.
  • 19 Schwarz HP, Lenting PJ, Binder B, Mihaly J, Denis C, Dorner F, Turecek PL. Involvement of low-density lipoprotein receptor-related protein (LRP) in the clearance of factor VIII in von Willebrand factor-deficient mice. Blood 2000; 95: 1703-8.
  • 20 Vlot AJ, Koppelman SJ, Bouma BN, Sixma JJ. Factor VIII and von Wille-brand factor. Thromb Haemost 1998; 79: 456-65.
  • 21 Connelly S, Andrews JL, Gallo-Penn AM, Tagliavacca L, Kaufman R, Kaleko M. Evaluation of an adenoviral vector encoding full length human factor VIII in hemophiliac mice. Thromb Haemost 1999; 81: 234-9.
  • 22 Lipshutz GS, Sarkar R, Flebbe-Rhewaldt L, Kazazian H, Gaensler KM. Short-term correction of factor VIII deficiency in a murine model of hemophilia A after delivery of adenovirus murine factor VIII in utero. Proc Natl Acad Sci USA 1999; 96: 13324-9.
  • 23 Burton M, Nakai H, Colosi P, Cunningham J, Mitchell R, Couto L. Coexpression of factor VIII heavy and light chain adeno-associated viral vectors produces biologically active protein. Proc Natl Acad Sci USA 1999; 96: 12725-30.
  • 24 VandenDriessche T, Vanslembrouck V, Goovaerts I, Zwinnen H, Vanderhaeghen M-L, Collen D, Chuah MKL. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci USA 1999; 96: 10379-84.
  • 25 Enjolras N, Rodriguez MH, Plantier JL, Maurice M, Attali O, Négrier C. The three in-frame ATG, clustered in the translation initiation sequence of human factor IX gene, are required for an optimal protein production. Thromb Haemost 1999; 82: 1264-9.
  • 26 Jallat S, Perraud F, Dalemans W, Balland A, Dieterle A, Faure T, Meulien P, Pavirani A. Characterization of recombinant human factor IX expressed in transgenic mice and in derived trans-immortalized hepatic cell lines. EMBO J 1990; 9: 3295-301.
  • 27 Kurachi S, Hitomi Y, Furukawa M, Kurachi K. Role of intron I in expression of the human factor IX gene. J Biol Chem 1995; 270: 5276-81.
  • 28 Miao CH, Ohashi K, Patijn GA, Meuse L, Ye X, Thompson AR, Kay MA. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 2000; 1: 522-32.
  • 29 Wang JM, Zheng H, Sugahara Y, Tan J, Yao SN, Olson E, Kurachi K. Construction of human factor IX expression vectors in retroviral vector frames optimized for muscle cells. Hum Gene Ther 1996; 7: 1743-56.
  • 30 Kozak M. Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 1997; 16: 2482-92.
  • 31 Yoshitake S, Schach B, Foster DC, Davie EW, Kurachi K. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985; 24: 3736-50.
  • 32 Lind P, Larsson K, Spira J, Sydow Backman M, Almstedt A, Gray E, Sand-berg H. Novel forms of B-domain-deleted recombinant factor VIII molecules. Construction and biochemical characterization. Eur J Biochem 1995; 232: 19-27.
  • 33 Kaufman RJ, Wasley LC, Dorner AJ. Synthesis, Processing and Secretion of recombinant Human Factor VIII Expressed in Mammalian Cells. J Biol Chem 1988; 263: 6352-62.
  • 34 Pittman DD, Tomkinson KN, Kaufman RJ. Post-translational Requirements for Functional Factor V and Factor VIII Secretion in Mammalian Cells. J Biol Chem 1994; 269: 17329-37.
  • 35 Kaufman RJ. Post-Transcriptional Modifications Required for Coagulation Factor Secretion and Function. Thromb Haemost 1998; 79: 1068-79.
  • 36 Chuah MK, Vandendriessche T, Morgan RA. Development and analysis of retroviral vectors expressing human factor VIII as a potential gene therapy for hemophilia A. Hum Gene Ther 1995; 6: 1363-77.
  • 37 Swaroop M, Moussalli M, Pipe SW, Kaufman RJ. Mutagenesis of a potential immunoglobulin-binding protein-binding site enhances secretion of coagulation factor VIII. J Biol Chem 1997; 272: 24121-4.
  • 38 Pipe SW, Kaufman RJ. Characterization of a genetically engineered inactivation-resistant coagulation factor VIIIa. Proc Natl Acad Sci USA 1997; 94: 11851-6.
  • 39 Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci USA 1988; 85: 836-40.
  • 40 Buchman AR, Berg P. Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol 1988; 8: 4395-405.
  • 41 Hamer DH, Leder P. Splicing and formation of stable RNA. Cell 1979; 18: 875-82.
  • 42 Connelly S, Gardner JM, McClelland A, Kaleko M. High-level tissue-specific expression of functional human factor VIII in mice. Hum Gene Ther 1996; 7: 183-95.
  • 43 Kessler O, Jiang Y, Chasin LA. Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Mol Cell Biol 1993; 13: 6211-22.
  • 44 Schulz S, Schmidt H, Handel M, Schreff M, Hollt V. Differential distribution of alternatively spliced somatostatin receptor 2 isoforms (sst2A and sst2B) in rat spinal cord. Neurosci Lett 1998; 257: 37-40.
  • 45 Carter MS, Li S, Wilkinson MF. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J 1996; 15: 5965-75.
  • 46 Fu XD. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 1993; 365: 82-5.
  • 47 Jimenez-Garcia LF, Spector DL. In vivo evidence that transcription and splicing are coordinated by a recruiting mechanism. Cell 1993; 73: 47-59.
  • 48 Tagliavacca L, Wang Q, Kaufman RJ. ATP-dependent dissociation of nondisulfide-linked aggregates of coagulation factor VIII is a rate-limiting step for secretion. Biochemistry 2000; 39: 1973-81.