Thromb Haemost 2001; 85(02): 331-340
DOI: 10.1055/s-0037-1615689
Review Article
Schattauer GmbH

Genetic and Pharmacological Analyses of Involvement of Src-family, Syk and Btk Tyrosine Kinases in Platelet Shape Change

Src-kinases Mediate Integrin αIIb β3 Inside-out Signaling during Shape Change
Markus Bauer
1   Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum der Universität München, München, Germany
,
Petra Maschberger
1   Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum der Universität München, München, Germany
,
Lynn Quek
2   Dr. von Haunersches Kinderspital, Klinikum der Universität München, München, Germany;
,
Stephen J. Briddon
2   Dr. von Haunersches Kinderspital, Klinikum der Universität München, München, Germany;
,
Debabrata Dash*
1   Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum der Universität München, München, Germany
,
Michael Weiss
3   Department of Pharmacology, Oxford University, Oxford, England
,
Steve P. Watson
2   Dr. von Haunersches Kinderspital, Klinikum der Universität München, München, Germany;
,
Wolfgang Siess
1   Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum der Universität München, München, Germany
› Author Affiliations
Further Information

Publication History

Received 16 April 2000

Accepted after resubmission 25 August 2000

Publication Date:
08 December 2017 (online)

Summary

Platelet shape change was found to be associated with an increase in protein tyrosine phosphorylation upon stimulation of thrombin-, ADPand thromboxane A2-G-protein coupled receptors in human platelets and thromboxane A2 receptors in mouse platelets. By using PP1 and PD173956, two structurally unrelated specific inhibitors of Src-family tyrosine kinases, and mouse platelets deficient in the Src-kinase Fyn or Lyn, we show that Src-family kinases cause the increase in protein tyrosine phosphorylation. We further detected that the non-Src tyrosine kinase Syk was activated during shape change in a manner dependent on Src-family kinaseactivation. The pharmacological experiments and the studies on Fyn-, Lyn- and Syk-deficient mouse platelets showed that neither Src-family kinases nor Syk are functionally involved in shape change. Also human platelets deficient of the tyrosine kinase Btk showed a normal shape change. Binding of PAC-1 that recognizes activated integrin αIIb β3 complexes on the platelet surface was enhanced during shape change and blocked by inhibition of Src-kinases. We conclude that the activation of Src-kinases and the subsequent Syk stimulation upon activation of G-protein coupled receptors are not involved in the cytoskeletal changes underlying shape change of human and mouse platelets, but that the stimulation of this evolutionary conserved pathway leads to integrin αIIb β3 exposure during shape change.

* Present address: Banaras Hindu University, Institute of Medical Sciences, Department of Biochemistry, Varanasi 221005, India


 
  • References

  • 1 Sanderson HM, Heptinstall S, Vickers J, Lösche W. Studies on the effects of agonists and antagonists on platelet shape change and platelet aggregation in whole blood. Blood Coagul Fibrinolysis 1996; 7: 245-8.
  • 2 Fox JE. Regulation of platelet function by the cytoskeleto. Adv Exp Med Biol 1993; 344: 175-85.
  • 3 Glenn JR, Spangenberg P, Heptinstall S. Actin polymerization and depolymerization in relation to platelet shape change, aggregation and disaggregation. Platelets 1996; 7/1-2: 27.
  • 4 Daniel JL, Molish IR, Rigmaiden M, Stewart G. Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J Biol Chem 1984; 259: 9826-31.
  • 5 Siess W. Molecular mechanisms of platelet activation. Physiol Rev 1989; 69: 58-178.
  • 6 Rink TJ, Smith SW, Tsien RY. Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett 1982; 148: 21-6.
  • 7 Rasmussen UB, Gachet C, Schlesinger Y, Hanau D, Ohlmann P, VanObberghen-Schilling E, Pouyssegur J, Cazenave JP, Pavirani A. A peptide ligand of the human thrombin receptor antagonizes alpha-thrombin and partially activates platelets. J Biol Chem 1993; 268: 14322-8.
  • 8 Offermanns S, Toombs CF, Hu YH, Simon MI. Defective platelet activation in Gαq-deficient mice. Nature 1997; 389: 183-6.
  • 9 Klages B, Brandt U, Simon MI, Schultz G, Offermanns S. Activation of G12/G13 results in shape change and Rho/Rho-kinase- mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 1999; 144: 745-54.
  • 10 Bauer M, Retzer M, Wilde JI, Maschberger P, Essler M, Aepfelbacher M, Watson SP, Siess W. Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets. Blood 1999; 94: 1665-72.
  • 11 Paul BZ, Daniel JL, Kunapuli SP. Platelet shape change is mediated by both calcium-dependent and – independent signaling pathways. Role of p160 rho-associated coiled-coil-containing protein kinase in platelet shape change. J Biol Chem 1999; 274: 28293-300.
  • 12 Negrescu EV, Luber de Quintana K, Siess W. Platelet shape change induced by thrombin receptor activation. Rapid stimulation of tyrosine phosphorylation of novel protein substrates through an integrin- and Ca2+-independent mechanism. J Biol Chem 1995; 270: 1057-61.
  • 13 Altmuller A, Presek P. Rapid protein tyrosine phosphorylation in the cytoskeleton of stimulated human platelets. Biochim Biophys Acta 1995; 1265: 61-6.
  • 14 Thomas SM, Soriano P, Imamoto A. Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature 1995; 376: 267-71.
  • 15 Jackson SP, Schoenwaelder SM, Yuan Y, Salem HH, Cooray P. Non-receptor protein tyrosine kinases and phosphatases in human platelets. Thromb Haemost 1996; 76: 640-50.
  • 16 Presek P, Martinson EA. Platelet Protein Tyrosine Kinases. Handb Exp Pharm 1997; 26: 261-96.
  • 17 Quek LS, Bolen J, Watson SP. A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 1998; 8: 1137-40.
  • 18 Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993; 72: 279-90.
  • 19 Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998; 91: 2645-57.
  • 20 Shattil SJ, Brass LF. Induction of the fibrinogen receptor on human platelets by intracellular mediators. J Biol Chem 1987; 262: 992-1000.
  • 21 Shattil SJ, Cunningham M, Wiedmer T, Zhao J, Sims PJ, Brass LF. Regulation of glycoprotein IIb-IIIa receptor function studied with platelets permeabilized by the pore-forming complement proteins C5b-9. J Biol Chem 1992; 267: 18424-31.
  • 22 Hers I, Donath J, van Willigen G, Akkerman JW. Differential involvement of tyrosine and serine/threonine kinases in platelet integrin αIIbβ3 exposure. Arterioscler Thromb Vasc Biol 1998; 18: 404-14.
  • 23 Taniguchi T, Kitagawa H, Yasue S, Yanagi S, Sakai K, Asahi M, Ohta S, Takeuchi F, Nakamura S, Yamamura H. Protein-tyrosine kinase p72syk is activated by thrombin and is negatively regulated through Ca2+ mobilization in platelets. J Biol Chem 1993; 268: 2277-9.
  • 24 Law DA, Nannizzi-Alaimo L, Ministri K, Hughes PE, Forsyth J, Turner M, Shattil SJ, Ginsberg MH, Tybulewicz VL, Phillips DR. Genetic and pharmacological analyses of Syk function in αIIbβ3 signaling in platelets. Blood 1999; 93: 2645-52.
  • 25 Stein PL, Lee HM, Rich S, Soriano P. pp59(fyn) mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 1992; 70: 741-50.
  • 26 Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker SA, Dunn AR. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 1995; 83: 301-11.
  • 27 Turner M, Gulbranson JA, Quinn ME, Walters AE, MacLennan IM, Tybulewicz VJ. Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B cell pool. J Exp Med 1997; 86: 2013-21.
  • 28 Turner M, Mee PJ, Costello PS, Williams O, Price AA, Duddy LP, Furlong MT, Geahlen RL, Tybulewicz VJ. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 1995; 378: 298-302.
  • 29 Holinski-Feder E, Weiss M, Brandau O, Jedele KB, Nore B, Backesjo CM, Vihinen M, Hubbard SR, Belohradsky BH, Smith CI, Meindl A. Mutation screening of the BTK gene in 56 families with X-linked agammaglobulinemia (XLA): 47 unique mutations without correlation to clinical course. Pediatrics 1998; 101: 276-84.
  • 30 Poole A, Gibbins JM, Turner M, van Vugt MJ, van de Winkel JG, Saito T, Tybulewicz VL, Watson SP. The Fc receptor γ-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J 1997; 16: 2333-41.
  • 31 Negrescu EV, Siess W. Dissociation of the αIIbβ3-integrin by EGTA stimulates the tyrosine kinase pp72syk without inducing platelet activation. J Biol Chem 1996; 271: 26547-53.
  • 32 Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb. IIIa complex during platelet activation. J Biol Chem 1985; 260: 11107-14.
  • 33 Gawaz M, Neumann FJ, Ott I, May A, Rudiger S, Schomig A. Changes in membrane glycoproteins of circulating platelets after coronary stent implantation. Heart 1996; 76: 166-72.
  • 34 Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA. Discovery of a novel, potent and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 1996; 271: 695-701.
  • 35 Briddon SJ, Watson SP. Evidence for the involvement of p59fyn and p53/56lyn in collagen receptor signalling in human platelets. Biochem J 1999; 338: 203-9.
  • 36 Riondino S, Gazzaniga PP, Pulcinelli FM. Shape change is independent of tyrosine phosphorylation of p130 in human platelets. Thromb Res 1998; 92: 73-8.
  • 37 Clark EA, Shattil SJ, Ginsberg MH, Bolen J, Brugge JS. Regulation of the protein tyrosine kinase pp72syk by platelet agonists and the integrin αIIbβ3 . J Biol Chem 1994; 269: 28859-64.
  • 38 Langhans-Rajasekaran SA, Wan Y, Huang XY. Activation of Tsk and Btk tyrosine kinases by G protein βγsubunits. Proc Natl Acad Sci USA 1995; 92: 8601-5.
  • 39 Bence K, Ma W, Kozasa T, Huang XY. Direct stimulation of Bruton’s tyrosine kinase by Gq-protein α-subunit. Nature 1997; 389: 296-9.
  • 40 Chen YH, Pouyssegur J, Courtneidge SA, Van Obberghen-Schilling E. Activation of Src family kinase activity by the G protein-coupled thrombin receptor in growth-responsive fibroblasts. J Biol Chem 1994; 269: 27372-7.
  • 41 Wan Y, Kurosaki T, Huang XY. Tyrosine kinases in activation of the MAP kinase cascade by G-protein- coupled receptors. Nature 1996; 380: 541-4.
  • 42 Kranenburg O, Verlaan I, Hordijk PL, Moolenaar WH. Gi-mediated activation of the Ras/MAP kinase pathway involves a 100 kDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc. EMBO J 1997; 16: 3097-105.
  • 43 Ohlmann P, Laugwitz KL, Nurnberg B, Spicher K, Schultz G, Cazenave JP, Gachet C. The human platelet ADP receptor activates Gi2 proteins. Biochem J 1995; 312: 775-9.
  • 44 Cattaneo M, Gachet C. ADP receptors and clinical bleeding disorders. Arterioscler Thromb Vasc Biol 1999; 19: 2281-5.
  • 45 Hung DT, Wong YH, Vu TK, Coughlin SR. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 1992; 267: 20831-4.
  • 46 Wilhelm B, Siess W. Activation of the cloned platelet thrombin receptor decreases the pertussis-toxin-dependent ADP-ribosylation of the membrane and soluble inhibitory guanine-nucleotide-binding-alpha proteins. Inhibition by the prostacyclin analog, iloprost. Eur J, Biochem 1993; 216: 81-8.
  • 47 Offermanns S, Laugwitz KL, Spicher K, Schultz G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 1994; 91: 504-8.
  • 48 Luttrell LM, Della RG, van Biesen T, Luttrell DK, Lefkowitz RJ. Gsubunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J Biol Chem 1997; 272: 4637-44.
  • 49 Cheng G, Ye ZS, Baltimore D. Binding of Bruton’s tyrosine kinase to Fyn, Lyn or Hck through a Src homology 3 domain-mediated interaction. Proc Natl Acad Sci USA 1994; 91: 8152-5.
  • 50 Gaits F, Li RY, Bigay J, Ragab A, Ragab-Thomas MF, Chap H. G-proteinsubunits mediate specific phosphorylation of the protein-tyrosine phosphatase SH-PTP1 induced by lysophosphatidic acid. J Biol Chem 1996; 271: 20151-5.
  • 51 Courtneidge SA. Activation of the pp60c-src kinase by middle T antigen binding or by dephosphorylation. EMBO J 1985; 4: 1471-7.
  • 52 Gallet C, Rosa JP, Habib A, Lebret M, Levy-Toledano S, Maclouf J. Tyro-sine phosphorylation of cortactin associated with Syk accompanies thromboxane analogue-induced platelet shape change. J Biol Chem 1999; 274: 23610-6.
  • 53 Siess W. The thrombin receptor. Handb Exp Pharm 1997; 126: 101-16.
  • 54 Hato T, Pampori N, Shattil SJ. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of inte-grin alphaIIb beta3. J Cell Biol 1998; 141: 1685-95.
  • 55 Dorahy DJ, Berndt MC, Burns GF. Capture by chemical crosslinkers provides evidence that integrin αIIbβ3 forms a complex with protein tyrosine kinases in intact platelets. Biochem J 1995; 309: 481-90.
  • 56 Elmore MA, Anand R, Horvath AR, Kellie S. Tyrosine-specific phosphorylation of gpIIIa in platelet membranes. FEBS Lett 1990; 269: 283-7.
  • 57 Findik D, Reuter C, Presek P. Platelet membrane glycoproteins IIb and IIIa are substrates of purified pp60c-src protein tyrosine kinase. FEBS Lett 1990; 262: 1-4.
  • 58 Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIb-beta3 signalling and platelet function. Nature 1999; 401: 808-11.
  • 59 Sarkar S, Rooney MM, Lord ST. Activation of integrin-β3-associated syk in platelets. Biochem J 1999; 338: 677-80.