Thromb Haemost 1999; 82(S 01): 27-31
DOI: 10.1055/s-0037-1615549
Commentaries
Schattauer GmbH

Gene Regulation and Arteriosclerosis: Are Developmental Programs Reactivated in Vascular Disease?

Cam Patterson
1   University of Texas Medical Branch, Division of Cardiology and Sealy Center for Molecular Cardiology, Galveston, TX, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
14 December 2017 (online)

Summary

The molecular mechanisms regulating the development of vascular diseases such as atherosclerosis remain poorly understood at present. Similarities between genetic programs observed during the course of vascular disease with those observed during vascular development suggest that developmental processes are recapitulated in vascular disease. The earliest event in vascular development is the differentiation of endothelial cells from their mesodermally-derived hamangioblastic precursors. The receptor for vascular endothelial growth factor, KDR/flk-1, plays a critical role in these earliest stages of vascular development. During development and in the adult, expression of this receptor is restricted to vascular endothelial cells and their immediate precursors. We have therefore endeavored to determine the transcriptional events regulating KDR/flk-1 expression, with the hope of gaining insight into processes of vascular development that might also be important in vascular diseases of the adult.

 
  • References

  • 1 Griendling KK, Alexander RW. Endothelial control of the cardiovascular system: recent advances. FASEB J 1996; 10: 283-92.
  • 2 Risau W. Differentiation of endothelium. Faseb J 1995; 9 (10) 926-33.
  • 3 Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P. et al. Role of tissue factor in embryonic blood vessel development. Nature 1996; 383: 73-5.
  • 4 Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439-442.
  • 5 Carmeliet P, Ferriera V, Breier G, Pollefeyt S, Nieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435-9.
  • 6 Alon T, Hemo I, Itin A, Pe-er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Medicine 1995; 1: 1024-8.
  • 7 Asahara T, Chen D, Tsurumi Y, Kearney M, Rossow S, Passeri J, Symes JF, Isner JM. Accelerated restitution of endothelial integrity and endotheliumdependent function after phVEGF165 gene transfer. Circulation 1996; 94: 3291-302.
  • 8 Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation 1995; 91: 2802-9.
  • 9 Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58-61.
  • 10 Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. New Engl J Med 1994; 331: 1480-7.
  • 11 O'Brien ER, Garvin MR, Dev R, Stewart DK, Hinohara T, Simpson JB, Schwartz SM. Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 1994; 145: 883-94.
  • 12 Ruef J, Hu ZY, Yin L-Y, Wu Y, Hanson SR, Kelly AB, Harker LA, Rao GN, Runge MS, Patterson C. Induction of vascular endothelial growth factor in balloon-injured baboon arteries. Circ Res 1997; 81: 24-33.
  • 13 Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843-5.
  • 14 Carmeliet P, Collen D. Vascular development and disorders: molecular analysis and pathogenic insights. Kidney Internationa 1998; 53: 1519-49.
  • 15 Guzman LA, Mick MJ, Arnold AM, Forudi F, Whitlow PL. Role of intimal hyperplasia and arterial remodeling after balloon angioplasty: an experimental study in the atherosclerotic rabbit model. Arterioscler. Thromb Vasc Biol 1996; 16: 479-87.
  • 16 Clarkson TB, Prichard RW, Morgan TM, Petrick GS, Klein KP. Remodeling of coronary arteries in human and nonhuman primates. JAMA 1994; 271: 289-94.
  • 17 Coffin JD, Poole TJ. Endothelial cell origin and migration in embryonic and cranial blood vessel development. Anat Rec 1991; 231: 383-95.
  • 18 Rychter Z. Experimental morphology of the aortic arches and heart loop in chick embryos. Adv Morphol. 1962 2. 333.
  • 19 Hidai C, Zupancic T, Penta K, Mikhail A, Kawana M, Quertermous EE, Aoka Y, Fukagawa M, Matsui Y, Platika D. et al. Cloning and characterization of developmental endothelial locus-1: An embryonic endothelial cell protein that binds the avb3 integrin receptor. Genes Dev 1998; 12: 21-33.
  • 20 Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Phsyiol 1997; 59: 89-144.
  • 21 Majesky MW, Giachelli CM, Reidy MA, Schwartz SM. Rat carotid neointimal smooth muscle cells reexpress a developmentally regulated mRNA phenotype during repair of arterial injury. Circ Res 1992; 71: 759-68.
  • 22 Hedin U, Holm J, Hannson GK. Induction of tenascin in rat arterial injury. Relationship to altered smooth muscle cell phenotype. Am J Pathol 1991; 139: 649-56.
  • 23 Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576-9.
  • 24 Kabrun N, Buhring HJ, Choi K, Ullrich A, Risau W, Keller G. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 1997; 124: 2039-48.
  • 25 Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 1998; 125: 1747-57.
  • 26 Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995; 11: 73-91.
  • 27 Coffin DJ, Poole TJ. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 1988; 102: 735-48.
  • 28 Asahara T, Murohara T, Sullivan A, Silver M, van der, Zee R, Li T, Witzen-bichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-7.
  • 29 Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362-7.
  • 30 Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine 1999; 5: 434-8.
  • 31 Eichmann A, Corbel C, Nataf V, Vaigot P, Breant C, Le Douarin NM. Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA 1997; 94: 5141-6.
  • 32 Suri C, Jones P, Patan S, Bartunkova S, Maisonpierre P, Davis S, Sato T, Yancopoulos G. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171-80.
  • 33 Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70-4.
  • 34 Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NPH, Risau W, Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72: 835-46.
  • 35 de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989-91.
  • 36 Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 1993; 90: 7533-7.
  • 37 Dumont DJ, Fong GH, Puri MC, Gradwohl G, Alitalo K, Breitman ML. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 1995; 203: 80-92.
  • 38 Yamaguchi TP, Dumont DJ, Conion RA, Breitman ML, Rossant J. flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 1993; 118: 489-98.
  • 39 Kaipainen A, Korhonen J, Pajusola K, Aprelikova O, Persico MG, Terman BI, Alitalo K. The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. J Exp Med 1993; 178: 2077-88.
  • 40 Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin C. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994; 269: 26988-95.
  • 41 Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu X-F, Breitman M, Schuh A. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376: 62-6.
  • 42 Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66-70.
  • 43 Dorfman DM, Wilson DB, Brans GA, Orkin SH. Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J Biol Chem 1992; 267 (2) 1279-85.
  • 44 Lee ME, Temizer DH, Clifford JA, Quertermous T. Cloning of the GATA-binding protein that regulates endothelin-1 gene expression in endothelial cells. J Biol Chem 1991; 266 (24) 16188-92.
  • 45 Pan J, McEver R. Characterization of the promoter for the human P-selectin gene. J Biol Chem 1993; 268: 22600-8.
  • 46 Zhang R, Min W, Sessa W. Functional analysis of the human endothelial nitric oxide synthase promoter. Sp1 and GATA factors are necessary for basal transcription in endothelial cells. J Biol Chem 1995; 270: 15320-6.
  • 47 Patterson C, Perrella MA, Hsieh C-M, Yoshizumi M, Lee M-E, Haber E. Cloning and functional analysis of the promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. J Biol Chem 1995; 270: 23111-8.
  • 48 Patterson C, Wu Y, Lee M-E, DeVault JD, Runge MS, Haber E. Nuclear protein interactions with the human KDR/flk-1 promoter in vivo. J Biol Chem 1997; 272: 8410-6.
  • 49 Yin L-Y, Wu Y, Ballinger CA, Patterson C. Genomic structure of the human KDR/flk-1 gene. Mammalian Genome 1998; 9: 408-10.
  • 50 Briggs M, Kadonanga J, Bell S, Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science 1986; 234: 47-52.
  • 51 Roy AL, Meisterernst M, Pognonec P, Roeder RG. Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loophelix activator USF. Nature 1991; 354: 245-8.
  • 52 Roy AL, Du H, Gregor PD, Novina CD, Martinez E, Roeder RG. Cloning of an Inr and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO J 1997; 16: 7091-104.
  • 53 Wu Y, Patterson C. The human KDR/flk-1 gene contains a functional initiator element that is bound and transactivated by TFII-I. J Biol Chem 1999; 274: 3207-14.