Thromb Haemost 2000; 84(01): 71-77
DOI: 10.1055/s-0037-1613970
Commentary
Schattauer GmbH

Plasminogen Binding Properties of Macrophage Inflammatory Protein (MIP)-2α

Begoña Arza
1   From the Institut de Recerca Oncològica (IRO), Hospital Duran i Reynals, Barcelona, Spain, Belgium
2   Center for Molecular and Vascular Biology, University of Leuven, Belgium
,
Jordi Félez
1   From the Institut de Recerca Oncològica (IRO), Hospital Duran i Reynals, Barcelona, Spain, Belgium
,
Pere Fábregas
1   From the Institut de Recerca Oncològica (IRO), Hospital Duran i Reynals, Barcelona, Spain, Belgium
,
Yves Laroche
3   Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
,
Désiré Collen
2   Center for Molecular and Vascular Biology, University of Leuven, Belgium
3   Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
,
Roger H. Lijnen
2   Center for Molecular and Vascular Biology, University of Leuven, Belgium
› Author Affiliations
This study was supported by research grants from the Fundación Ramón Areces; SCS Generalitat de Catalunya; Marató TV3-Cardiovascular; CIRIT:1998BEAI200014, and from the Flemish Fund for Scientific Research (FWO, contract G.0138.00).
Further Information

Publication History

Received 17 November 1999

Accepted after resubmission 24 February 2000

Publication Date:
10 December 2017 (online)

Summary

The chemokine macrophage inflammatory protein (MIP)-2α was identified as a plasminogen binding protein by phage display analysis. MIP-2α and a truncated form lacking 5 lysine residues in the COOHterminal region (mut-MIP-2α) were expressed in E. coli and purified to apparent homogeneity. Purified MIP-2α but not mut-MIP-2α bound specifically to plasminogen, with KA of 3.7×105 M−1 for the interaction of plasminogen with surface-bound MIP-2α. Binding and competition experiments indicated that the interaction involves the region comprising the first 3 kringles of plasminogen and the COOH-terminal lysine-rich domain of MIP-2α. Activation of plasminogen bound to surface-associated MIP-2α by two-chain urokinase-type plasminogen activator (tcu-PA) was about 2.5-fold more efficient than in solution (catalytic efficiency kcat/KM of 0.1 µM−1s−1, as compared to 0.04 µM−1s−1). In contrast, binding of plasminogen to MIP-2α in solution was very weak, as evidenced by the absence of competition of MIP-2α with lysine-Sepharose or with human THP-1 cells for binding of plasminogen. In agreement with this finding, addition of excess MIP-2α did not affect the main functional properties of plasmin(ogen) in solution, as indicated by unaltered activation rates of plasminogen by tcu-PA or tissuetype plasminogen activator (t-PA), t-PA-mediated fibrinolysis, and inhibition rate of plasmin by α2-antiplasmin. Thus, association of MIP-2α with surfaces exposes its COOH-terminal plasminogen-binding site, and may result in enhanced local plasmin generation.

Parts of this study were presented at the ETRO/EUROCONFERENCE on Receptors in Fibrinolysis (Leiden, The Netherlands, 1997), at the XIII Congreso de la Sociedad Española de Trombosis y Hemostasia (Barcelona, Spain, 1997), and at the VIth International Workshop on Molecular and Cellular Biology of Plasminogen Activation (San Diego, USA, 1997).


 
  • References

  • 1 Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991; 78: 3114-24.
  • 2 Murphy G. Matrix metalloproteinases and their inhibitors. Acta Orth Scand 1995; 266: 55-60.
  • 3 Thorsen S. The mechanism of plasminogen activation and the variability of the fibrin effector during tissue-type plasminogen activator-mediated fibrinolysis. Ann N Y Acad Sci 1992; 667: 52-63.
  • 4 Plow EF, Herren T, Redlitz A, Miles LA, Hoover-Plow JL. The cell biology of the plasminogen system. FASEB J 1995; 09: 939-45.
  • 5 Hall SW, Humphries JE, Gonias SL. Inhibition of cell surface receptorbound plasmin by alpha2-antiplasmin and alpha2-macroglobulin. J Biol Chem 1991; 266: 12329-36.
  • 6 Wiman B, Lijnen HR, Collen D. On the specific interaction between the lysine-binding sites in plasmin and complementary sites in alpha-2-antiplasmin and in fibrinogen. Biochim Biophys Acta 1979; 579: 142-54.
  • 7 Lijnen HR, Hoylaerts M, Collen D. Isolation and characterization of a human plasma protein with affinity for the lysine binding sites in plasminogen Role in the regulation of fibrinolysis and identification as histidine-rich glycoprotein. J Biol Chem 1980; 255: 10214-22.
  • 8 Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF. Role of cell-surface lysines in plasminogen binding to cells: identification of alphaenolase as candidate plasminogen receptor. Biochemistry 1991; 30: 1682-91.
  • 9 Hajjar KA, Jacovina AT, Chacko J. An endothelial cell receptor for plasminogen/tissue plasminogen activator I. Identity with annexin II. J Biol Chem 1994; 269: 21191-7.
  • 10 Cesarman GM, Guevara CA, Hajjar KA. An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA) II. Annexin mediated enhancement of t-PA dependent plasminogen activation. J Biol Chem 1994; 269: 21198-203.
  • 11 Dudani AK, Hashemi S, Aye MT, Ganz PR. Identification of an endothelial cell surface protein that binds plasminogen. Mol Cell Biochem 1991; 108: 133-40.
  • 12 Felez J, Miles LA, Fabregas P, Jardi M, Plow EF, Lijnen HR. Characterization of cellular binding sites and interactive regions within reactants required for enhancement of plasminogen activation by tPA on the surface of leukocytic cells. Thromb Haemost 1996; 76: 577-85.
  • 13 Longstaff C, Merton ER, Fabregas P, Felez J. Characterization of cell associated plasminogen activation catalysed by urokinase-type plasminogen activator (uPA) but independent of uPAR (CD87). Blood 1999; 93: 3839-46.
  • 14 Vaddi K, Keller M, Newton RC. Chemokine: on overview. In: The chemokine factsbook. San Diego: Harcourt Brace & Company; 1996: 10-7.
  • 15 Tekamp-Olson P, Gallegos C, Bauer D, McClain J, Sherry B, Fabre M, van Deventer S, Cerami A. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues. J Exp Med 1990; 172: 911-9.
  • 16 Deutsch DG, Mertz ET. Plasminogen: Purification from human plasma by affinity chromatography. Science 1970; 170: 1095-6.
  • 17 Lijnen HR, Van Hoef B, Collen D. Comparative kinetic analysis of the activation of human plasminogen by natural and recombinant single-chain urokinase-type plasminogen activator. Biochim Biophys Acta 1986; 884: 402-8.
  • 18 Lijnen HR, Van Hoef B, Collen D. On the role of the carbohydrate side chains of human plasminogen in its interaction with alpha 2-antiplasmin and fibrin. Eur J Biochem 1981; 120: 149-54.
  • 19 Zamarron C, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by natural and recombinant tissue-type plasminogen activator. J Biol Chem 1984; 259 (04) 2080-3.
  • 20 Felez J, Chanquia CJ, Levin EG, Miles LA, Plow EF. Binding of tissue plasminogen activator to human monocytes and monocytoid cells. Blood 1991; 78: 2318-27.
  • 21 Crameri R, Suter M. Display of biologically active proteins on the surface of filamentous phages: a cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production. Gene 1993; 137: 69-75.
  • 22 Barbas III CF, Lerner RA. Combinatorial immunoglobulin libraries on the surface of phage (Phabs); rapid selection of antigen-specific Fabs. Methods Enzymol 1991; 02: 119-24.
  • 23 Jespers L, Jenne S, Lasters I, Collen D. Epitope mapping by negative selection of randomized antigen libraries displayed on filamentous phage. J Mol Biol 1997; 269: 704-18.
  • 24 Felez J, Chanquia CJ, Fabregas P, Plow EF, Miles LA. Competition between plasminogen and t-PA for cellular binding sites. Blood 1993; 82: 2433-41.
  • 25 Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. J Biol Chem 1982; 257: 2912-9.
  • 26 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403-10.
  • 27 Haskill S, Peace A, Morris J, Sporn SA, Anisowicz A, Lee SW, Smith T, Martin G, Ralph P, Sager R. Identification of three related human GRO genes encoding cytokine functions. Proc Natl Acad Sci USA 1990; 87: 7732-6.
  • 28 Frankel E, Gerhard W. The rapid determination of binding constants for antiviral antibodies by a radioimmunoassay An analysis of the interaction between hybridoma proteins and influenza virus. Mol Immunol 1979; 16: 101-6.
  • 29 Rollins BJ. Chemokines. Blood 1997; 90: 909-28.
  • 30 Schroder JM, Mrowietz U, Morita E, Christophers E. Purification and partial biochemical characterization of a human monocyte-derived, neutrophilactivating peptide that lacks interleukin 1 activity. J Immunol 1987; 139: 3474-83.
  • 31 Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995; 270: 27348-57.
  • 32 Strieter RM, Polverini PJ, Arenberg DA, Walz A, Opdenakker G, Van Damme J, Kunkel SL. Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. J Leukoc Biol 1995; 57: 752-62.
  • 33 Cao Y, Chen C, Weatherbee JA, Tsang M, Folkman J. gro-beta, a -C-X-C-chemokine, is an angiogenesis inhibitor that suppresses the growth of Lewis lung carcinoma in mice. J Exp Med 1995; 182: 2069-77.
  • 34 Feng L, Xia Y, Yoshimura T, Wilson CB. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody. J Clin Inv 1995; 95: 1009-17.
  • 35 Kasama T, Strieter RM, Lukacs NW, Lincoln PM, Burdick MD, Kunkel SL. Interleukin-10 expression and chemokine regulation during the evolution of murine type II collagen-induced arthritis. J Clin Inv 1995; 95: 2868-76.
  • 36 Frevert CW, Farone A, Danaee H, Paulauskis JD, Kobzik L. Functional characterization of rat chemokine macrophage inflammatory protein-2. Inflammation 1995; 19: 133-42.
  • 37 Standiford TJ, Strieter RM, Lukacs NW, Kunkel SL. Neutralization of IL10 increases lethality in endotoxemia Cooperative effects of macrophage inflammatory protein-2 and tumor necrosis factor. J Immunol 1995; 155: 2222-9.
  • 38 Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, Wood WI, Moore MW. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 1994; 265: 682-4.
  • 39 Schmal H, Shanley TP, Jones ML, Friedl HP, Ward PA. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats. The Journal of Immunology 1996; 156: 1963-72.
  • 40 Greineder DK, Connorton KJ, David JR. Plasminogen activator production by human monocytes I. Enhancement by activated lymphocytes and lymphocyte products. J Immunol 1979; 123: 2808-13.
  • 41 Felez J. Plasminogen binding to cell surfaces. Fibrinolysis & Proteolysis 1998; 12: 183-9.
  • 42 Savage B, Ruggeri ZM. Selective recognition of adhesive sites in surfacebound fibrinogen by glycoprotein IIb-IIIa on nonactivated platelets. J Biol Chem 1991; 266: 11227-33.
  • 43 Deiters U, Muhlradt PF. Mycoplasmal lipopeptide MALP-2 induces the chemoattractant proteins macrophage inflammatory protein 1alpha (MIP-1alpha), monocyte chemoattractant protein 1, and MIP-2 and promotes leukocyte infiltration in mice. Infect Immun 1999; 67: 3390-8.
  • 44 Wolpe SD, Sherry B, Juers D, Davatelis G, Yurt RW, Cerami A. Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci U S A 1989; 86: 612-6.
  • 45 Kurdowska A, Cohen AB, Carr FK, Stevens MD, Miller EJ, Mullenbach G, Tekamp-Olson P. Biological and kinetic characterization of recombinant human macrophage inflammatory peptides 2 alpha and beta and comparison with the neutrophil activating peptide 2 and interleukin 8. Cytokine 1994; 06: 124-34.