Thromb Haemost 2003; 89(04): 637-646
DOI: 10.1055/s-0037-1613585
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

New molecular defects in the γ subdomain of fibrinogen D-domain in four cases of (hypo)dysfibrinogenemia: fibrinogen variants Hannover VI, Homburg VII, Stuttgart and Suhl

Michael Meyer
1   Department of Biomedical Engineering, University of Applied Sciences, Jena, Germany
,
Kathrin Franke
1   Department of Biomedical Engineering, University of Applied Sciences, Jena, Germany
,
Walter Richter
2   Institute of Ultrastructural Research, Friedrich Schiller University Jena, Germany
,
Frank Steiniger
2   Institute of Ultrastructural Research, Friedrich Schiller University Jena, Germany
,
Ulrich T. Seyfert
3   Department of Clinical Haemostaseology and Blood Transfusion, University Saarland, Homburg, Germany
,
Joachim Schenk
3   Department of Clinical Haemostaseology and Blood Transfusion, University Saarland, Homburg, Germany
,
Jörn Treuner
4   Department of Pediatrics, Olga Hospital, Stuttgart, Germany
,
Werner Haberbosch
1   Department of Biomedical Engineering, University of Applied Sciences, Jena, Germany
,
Roswit Eisert
1   Department of Biomedical Engineering, University of Applied Sciences, Jena, Germany
,
Monika Barthels
1   Department of Biomedical Engineering, University of Applied Sciences, Jena, Germany
› Author Affiliations
Further Information

Publication History

Received 26 September 2002

Accepted after revision 07 January 2003

Publication Date:
07 December 2017 (online)

Summary

Four new molecular abnormalities in the γ subdomain of the D domain elucidated in three unrelated thrombophilic patients and in one asymptomatic case of hypofibrinogenemia are reported: fibrinogen Suhl, γ 326,Cys →Tyr, fibrinogen Hannover VI, γ 336 Met →Ile, fibrinogen Stuttgart, γ 345, Asn→Asp and fibrinogen Homburg VII, γ354,Tyr→Cys. In all cases, fibrin polymerization in plasma is impaired. In the case of fibrinogen Suhl, there was a normalization of fibrin polymerization in plasma at higher Ca2+ concentration. The protective effect of Ca2+ on plasmic degradation of fibrinogen was incomplete with all three variants. The fibrinogen molecules in variants Homburg VII and Suhl contain covalently bound albumin. Fibrin clot structure was abnormal in case of variant Homburg VII, with finer and more branched fibers forming a less porous clot. Experimental data indicate possible effects of the molecular abnormalities on Ca2+-binding, D-E interaction and lateral association of protofibrils.

 
  • References

  • 1 Henschen A, McDonagh J. Fibrinogen, fibrin and factor XIII. In: Blood Coagulation. Zwaal RFA, Hemker HC. eds Amsterdam: Elsevier Science Publ; 1986: 171-241.
  • 2 Doolittle RF. Fibrinogen and fibrin. In: Haemostasis and Thrombosis, 2ndEdn. Bloom F, Thomas DP, eds. Edinburgh: Churchill Livingstone 1981; 163-91.
  • 3 Cierniewski CS, Budzynski AZ. Localization of the crosslinking site of GPRVVERHK in the γ-chain of human fibrinogen. Eur J Biochem 1993; 218: 321-5.
  • 4 Dang CV, Ebert RF, Bell WR. Localization of a fibrinogen calcium binding site between γ-subunit positions 311 and 336 by terbium fluorescence. J Biol Chem 1985; 260: 9713-9.
  • 5 Váradi A, Scheraga HA. Localization of segments essential for polymerization and calcium binding in the γ-chain of human fibrinogen. Biochemistry 1986; 25: 519-28.
  • 6 Shimizu A, Nagel GM, Doolittle RF. Photo-affinity labeling of the primary fibrin polymerization site: isolation and characterization of a labeled cyanogen bromide fragment corresponding to γ-chain of human fibrinogen. Proc Natl Acad Sci USA 1992; 89: 2888-92.
  • 7 Pratt KP, Cotè HCF, Chung DW, Stenkamp RE, Davie EW. The fibrin polymerization pocket: Three-dimensional structure of a 30-kDa C-terminal γ chain fragment complexed with the peptide Gly-Pro-Arg-Pro. Proc Natl Acad Sci USA 1997; 94: 7176-81.
  • 8 Ebert RF. Index of variant human fibrinogen. Boca Raton: CRC Press; 1994
  • 9 Fibrinogen Variants. Database. www.geht.org/pages/database.
  • 10 Coté HCF, Lord ST, Pratt KP. γ-chain dysfibrinogenemias: Molecular structure-function relationships of naturally occuring mutations in the γ chain of human fibrinogens. Blood 1998; 92: 2195-212.
  • 11 Hogan KA, Gorkun OV, Lounes KC, Coates I A, Weisel JW, Hantgan RR, Lord ST. Recombinant fibrinogen Vlissingen/Frankfurt IV. The deletion of residues 319 and 320 from the γ chain of fibrinogen alters calcium binding, fibrin polymerization, cross-linking, and platelet aggregation. J Biol Chem 2000; 275: 17778-85.
  • 12 Remijn JA, IJsseldijk MJ, van Hemel BM, Galanakis DK, Hogan KA, Lounes KC, Lord ST, Sixma JJ, de Groot PG. Reduced platelet adhesion in flowing blood to fibrinogen by alterations in segment gamma316-322, part of the fibrin-specific region. Br J Haematol 2002; 117: 650-7.
  • 13 Lord ST, Gorkun OV. Insight from studies with recombinant fibrinogens. Ann N Y Acad Sci 2001; 936: 101-16.
  • 14 Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrino-gen and its crosslinked counterpart from fibrin. Nature 1997; 389: 455-62.
  • 15 Everse SJ, Spraggon G, Veerapandian L, Riley M, Doolittle RF. Crystal structure of fragment double-D from human fibrin with two different bound ligands. Biochemistry 1998; 37: 8637-42.
  • 16 Yee VC, Pratt KP, Cote HC, Trong IL, Chung DW, Davie EW, Stenkamp RE, Teller DC. Crystal structure of a 30 kDa C-terminal fragment from the gamma chain of human fibrino-gen. Structure 1997; 5: 125-38.
  • 17 Kazal LA, Amsel S, Miller OP, Tocantins LM. The preparation and some properties of fib-rinogen precipitated from human plasma by glycine. Proc Soc Exptl Biol Med 1963; 113: 989-94.
  • 18 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacterio-phage T4. Nature 1970; 227: 680-5.
  • 19 Towbin H, Staehelin T, Gordon J. Electro-phoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 1979; 76: 4350-4.
  • 20 Everse SJ, Spraggon G, Doolittle RF. A three-dimensional consideration of variant human fibrinogens. Thromb Haemost 1998; 80: 1-9.
  • 21 Haverkate F, Timan G. Protective effect of calcium in the plasmin degradation of fibrinogen and fibrin fragments D. Thromb Res 1977; 10: 803-12.
  • 22 Furlan M, Stucki B, Steinmann C, Jungo M, Laemmle B. Normal binding of calcium to five fibrinogen variants with mutations in the carboxy terminal part of the γ-chain. Thromb Haemost 1996; 76: 377-83.
  • 23 Steinmann C, Reber P, Jungo M, Laemmle B, Heinemann G, Wermuth B, Furlan M. Fibrinogen Bern I: substitution gamma 337 Asn→Lys is responsible for defective fibrin monomer polymerization. Blood 1993; 82: 2104-8.
  • 24 Koopman J, Haverkate F, Grimbergen J, Lord ST, Mosesson MW, DiOrio JP, Siebenlist KS, Legrand C, Soria J, Soria C, Caen JP. Molecular basis for fibrinogen Dusart (Aα 554 Arg→Cys) and its association with abnormal fibrin polymerization and thrombophilia. J Clin Invest 1993; 91: 1637-43.
  • 25 Marchi R, Lundberg U, Grimbergen J, Koopman J, Torres A, de Bosch NB, Haverkate F, Arocha Pinango CL. Fibrinogen Caracas V, an abnormal fibrinogen with an Aα 532 Ser→Cys substitution associated with thrombosis. Thromb Haemost 2000; 84: 263-70.
  • 26 Steinmann C, Boegli C, Jungo M, Laemmle B, Heinemann G, Wermuth B, Redaelli R, Baudo F, Furlan M. A new substitution, γ358 Ser→Cys, in fibrinogen Milano VII causes defective fibrin polymerization. Blood 1994; 84: 1874-80.
  • 27 Okumura N, Furihata K, Terasawa F, Nakagoshi R, Ueno I, Katsuyama T. Fibrinogen Matsumoto I: A γ364 Asp→His (GAT→CAT) substitution associated with defective fibrin polymerization. Thromb Haemost 1996; 75: 887-91.
  • 28 Bentolila S, Samama MM, Conard J, Horellou MH, French P. Association of dysfibrinogenemia and thrombosis. Apropos of a family (Fibrinogen Melun) and review of the literature. Ann Med Interne Paris 1995; 146: 575-80.
  • 29 Yoshida N, Hirata H, Morigami Y, Imaoka S, Matsuda M, Yamazumi K, Asakura S. Characterization of an abnormal fibrinogen Osaka V with the replacement of γ-arginine 375 by glycine. The lack of high affinity calcium binding to the D-domain and the lack of protective effect of calcium on fibrinolysis. J Biol Chem 1992; 267: 2753-9.
  • 30 Doolittle RF. A detailed consideration of a principal domain of vertebrate fibrinogen and its relatives. Protein Sci 1992; 1: 1563-77.
  • 31 Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC subcommittee on fibrinogen. Thromb Haemost 1995; 73: 151-61.
  • 32 Reber P, Furlan M, Henschen A, Kaudewitz H, Barbui T, Hilgard P, Nenci GG, Berrettini M, Beck EA. Three abnormal fibrinogen variants with the same amino acid substitution (γ275 Arg→His): fibrinogens Bergamo II, Essen and Perugia. Thromb Haemost 1986; 56: 401-6.
  • 33 Siebenlist KR, Mosesson MW, DiOrio JP, Tavori S, Tatarsky I, Rimon A. The polymerization of fibrin prepared from fibrinogen Haifa (γ275Arg→His). Thromb Haemost 1989; 62: 875-9.
  • 34 Koopman J, Haverkate F, Briet E, Lord ST. A congenitally abnormal fibrinogen (Vlissingen) with a 6-base deletion in the γ-chain, causing defective calcium binding and impaired fibrin polymerization. J Biol Chem 1991; 266: 13456-61.
  • 35 Collet J-P, Soria J, Mirshahi M, Hirsch M, Dagonnet FB, Caen J, Soria C. Dusart syndrome: A new concept of the relationship between fibrin clot architecture and fibrin clot degradability: hypofibrinolysis related to an abnormal clot structure. Blood 1993; 82: 2462-9.