Thromb Haemost 2003; 89(01): 74-82
DOI: 10.1055/s-0037-1613545
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

Elucidation of the paratope of scFv-8H9D4, a PAI-1 neutralizing antibody derivative

Koen Verbeke
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
,
Ann Gils
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
,
Jean-Marie Stassen
2   Boehringer Ingelheim Pharma KG, Biberach, Germany
*   Current address: Thromb-X, Leuven, Belgium
,
Paul J. Declerck
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
› Author Affiliations
Further Information

Publication History

Received 02 July 2002

Accepted after revision 18 October 2002

Publication Date:
09 December 2017 (online)

Summary

Interfering with increased levels of plasminogen activator inhibitor-1 (PAI-1) might offer new therapeutic strategies for a variety of cardiovascular diseases. Inactivation of PAI-1 can be accomplished by a number of monoclonal antibodies (MA), including MA-8H9D4. In a previous study, a single-chain variable fragment (scFv-8H9D4) was cloned and found to have the same properties as the parental MA-8H9D4. In the present study, we identified the residues of scFv-8H9D4 that contribute significantly to the paratope. The complementarity determining region 3 from the heavy (H3) and the light (L3) chain were analysed through site-directed mutagenesis. Out of twelve mutations, only four residues appeared to contribute to the paratope. The affinity of scFv-8H9D4-H3-L97D for PAI-1 was 38-fold decreased (KA = 4.8 ± 0.2 × 107 M–1 vs. 1.8 ± 0.7 × 109 M–1 for scFv-8H9D4) whereas scFv-8H9D4-H3-R98Y did not bind to PAI-1. The affinities of scFv-8H9D4-L3-Y91S and scFv-8H9D4-L3-F94D for PAI-1 were 9- and 5-fold reduced, respectively, whereas the combined mutation resulted in an 86-fold decreased affinity (KA = 2.1 ± 0.2 × 107 M–1).In accordance with the affinity data, these mutants had no, or a reduced, PAI-1 inhibitory capacity, confirming that these four particular residues form the major interaction site of scFv-8H9D4 with PAI-1. In combination with the three-dimensional structure, these data contribute to the rational design of PAI-1 neutralizing compounds.

 
  • References

  • 1 Pannekoek H, Veerman H, Lambers H, Diergaarde P, Verweij CL, van Zonneveld AJ, van Mourik JA. Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene family. EMBO J 1986; 5: 2539-44.
  • 2 Loskutoff DJ, Sawdey M, Mimuro J. Type 1 plasminogen activator inhibitor. Prog Hemost Thromb 1989; 9: 87-115.
  • 3 Lijnen HR, Collen D. Mechanisms of physiological fibrinolysis. Baillieres Clin Haematol 1995; 8: 277-90.
  • 4 van Meijer M, Pannekoek H. Structure of plasminogen activator inhibitor 1 (PAI-1) and its function in fibrinolysis: an update. Fibrinoly-sis 1995; 9: 261-76.
  • 5 Kruithof EK, Tran Thang C, Ransijn A, Bachmann F. Demonstration of a fast-acting inhibitor of plasminogen activators in human plasma. Blood 1984; 64: 907-13.
  • 6 Thorsen S, Philips M, Selmer J, Lecander I, Astedt B. Kinetics of inhibition of tissue-type and urokinase-type plasminogen activator by plasminogen-activator inhibitor type 1 and type 2. Eur J Biochem 1988; 175: 33-9.
  • 7 Hekman CM, Loskutoff DJ. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 1985; 260: 11581-7.
  • 8 Declerck PJ, De Mol M, Alessi MC, Baudner S, Paques EP, Preissner KT, Muller Berghaus G, Collen D. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J Biol Chem 1988; 263: 15454-61.
  • 9 Urano T, Strandberg L, Johansson LB, Ny T. A substrate-like form of plasminogen-activator-inhibitor type 1. Conversions between different forms by sodium dodecyl sulphate. Eur J Biochem 1992; 209: 985-92.
  • 10 Declerck PJ, De Mol M, Vaughan DE, Collen D. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a noninhibitory substrate for tissue-type plasminogen activator. J Biol Chem 1992; 267: 11693-6.
  • 11 Munch M, Heegaard CW, Andreasen PA. Inter-conversions between active, inert and substrate forms of denatured/refolded type-1 plasmino-gen activator inhibitor. Biochim Biophys Acta 1993; 1202: 29-37.
  • 12 Schleef RR, Higgins DL, Pillemer E, Levitt LJ. Bleeding diathesis due to decreased functional activity of type 1 plasminogen activator inhibitor. J Clin Invest 1989; 83: 1747-52.
  • 13 Fay WP, Shapiro AD, Shih JL, Schleef RR, Ginsburg D. Brief report: complete deficiency of plasminogen-activator inhibitor type 1 due to a frame-shift mutation. N Engl J Med 1992; 327: 1729-33.
  • 14 Lee MH, Vosburgh E, Anderson K, McDonagh J. Deficiency of plasma plasminogen activator inhibitor 1 results in hyperfibrinolytic bleeding. Blood 1993; 81: 2357-62.
  • 15 Fay WP, Parker AC, Condrey LR, Shapiro AD. Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood 1997; 90: 204-8.
  • 16 Minowa H, Takahashi Y, Tanaka T, Naganuma K, Ida S, Maki I, Yoshioka A. Four cases of bleeding diathesis in children due to congenital plasminogen activator inhibitor-1 deficiency. Haemostasis 1999; 29: 286-91.
  • 17 Declerck PJ, Juhan Vague I, Felez J, Wiman B. Pathophysiology of fibrinolysis. J Intern Med 1994; 236: 425-32.
  • 18 Hamsten A, de Faire U, Walldius G, Dahlen G, Szamosi A, Landou C, Blomback M, Wiman B. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987; 2: 3-9.
  • 19 Held C, Hjemdahl P, Rehnqvist N, Wallen H, Bjorkander I, Eriksson SV, Forslund L, Wiman B. Fibrinolytic variables and cardiovascular prognosis in patients with stable angina pectoris treated with verapamil or metoprolol: results from the angina prognosis study in Stockholm. Circulation 1997; 95: 2380-6.
  • 20 Wiman B. Predictive value of fibrinolytic factors in coronary heart disease. Scand J Clin Lab Invest 1999; 59: 23-31.
  • 21 Cortellaro M, Cofrancesco E, Boschetti C, Mussoni L, Donati MB, Cardillo M, Catalano M, Gabrielli L, Lombardi B, Specchia G. et al. Increased fibrin turnover and high PAI-1 activity as predictors of ischemic events in atherosclerotic patients. A case-control study. The PLAT Group. Arterioscler Thromb 1993; 13: 1412-7.
  • 22 Juhan-Vague I, Alessi MC, Vague P. Thrombogenic and fibrinolytic factors and cardiovascular risk in non-insulin-dependent diabetes mellitus. Ann Med 1996; 28: 371-80.
  • 23 Juhan-Vague I, Alessi MC, Morange PE. Hypofibrinolysis and increased PAI-1 are linked to atherothrombosis via insulin resistance and obesity. Ann Med 2000; 32 Suppl (Suppl. 01) 78-84.
  • 24 Carmeliet P, Stassen JM, Schoonjans L, Ream B, van den Oord JJ, De Mol M, Mulligan RC, Collen D. Plasminogen activator inhibitor-1 gene deficient mice. II. Effects on hemostasis, thrombosis and thrombolysis. J Clin Invest 1993; 92: 2756-60.
  • 25 Farrehi PM, Ozaki CK, Carmeliet P, Fay WP. Regulation of arterial thrombolysis by plasminogen activator inhibitor-1 in mice. Circulation 1998; 97: 1002-8.
  • 26 Eitzman DT, Westrick RJ, Xu ZJ, Tyson J, Ginsburg D. Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood 2000; 96: 4212-5.
  • 27 Erickson LA, Fici GJ, Lund JE, Boyle TP, Polites HG, Marotti KR. Development of venous occlusions in mice transgenic for the plasminogen activator inhibitor-1 gene. Nature 1990; 346: 74-6.
  • 28 Eitzman DT, Fay WP, Lawrence DA, Francis Chmura AM, Shore JD, Olson ST, Ginsburg D. Peptide-mediated inactivation of recombinant and platelet plasminogen activator inhibitor-1 in vitro. J Clin Invest 1995; 95: 2416-20.
  • 29 Kvassman JO, Lawrence DA, Shore JD. The acid stabilization of plasminogen activator inhibitor-1 depends on protonation of a single group that affects loop insertion into beta-sheet A. J Biol Chem 1995; 270: 27942-7.
  • 30 Xue Y, Björquist P, Inghardt T, Linschoten M, Musil D, Sjölin L, Deinum J. Interfering with the inhibitory meachnism of serpins: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide. Structure 1998; 6: 627-36.
  • 31 Bryans J, Charlton PR, Collins M, Faint R, Latham C, Shaw I, Trew S. Inhibition of plasminogen activator inhibitor 1 activity by two diketopiperazines, xr330 and xr334 produced by streptomyces sp. J Antibiot 1996; 49: 1014-21.
  • 32 Charlton PA, Faint RW, Bent F, Bryans J, Chicarelli-Robinson I, Mackie I, Machin S, Bevan P. Evaluation of a low molecular weight modulator of human plasminogen activator inhibitor 1 activity. Thromb Haemost 1996; 75: 808-15.
  • 33 Friederich PW, Levi MR, Biemond BJ, Charlton P, Templeton D, Vanzonneveld AJ, Bevan P, Pannekoek H, Tencate JW. Novel low molecular weight inhibitor of PAI 1 (xr5118) promotes endogenous fibrinolysis and reduces postthrombolysis thrombus growth in rabbits. Circulation 1997; 96: 916-21.
  • 34 Bjorquist P, Ehnebom J, Inghardt T, Hansson L, Lindberg M, Linschoten M, Stromqvist M, Deinum J. Identification of the binding site for a low-molecular-weight inhibitor of plasminogen activator inhibitor type 1 by site- directed mutagenesis. Biochemistry 1998; 37: 1227-34.
  • 35 Chikanishi T, Shinohara C, Kikuchi T, Endo A, Hasumi K. Inhibition of plasminogen activator inhibitor-1 by 11-keto-9(E), 12(E)-octadecadienoic acid, a novel fatty acid produced by Trichoderma sp. J Antibiot 1999; 52: 797-802.
  • 36 Egelund R, Einholm AP, Pedersen KE, Nielsen RW, Christensen A, Deinum J, Andreasen PA. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands. Ligand-induced serpin polymerization. J Biol Chem 2001; 276: 13077-86.
  • 37 Folkes A, Roe MB, Sohal S, Golec J, Faint R, Brooks T, Charlton P. Synthesis and in vitro evaluation of a series of diketopiperazine inhibitors of plasminogen activator inhibitor-1. Bioorg Med Chem Lett 2001; 11: 2589-92.
  • 38 Stec WJ, Cierniewski CS, Okruszek A, Kobylanska A, Pawlowska Z, Koziolkiewicz M, Pluskota E, Maciaszek A, Rebowska B, Stasiak M. Stereodependent inhibition of plasminogen activator inhibitor type 1 by phosphorothioate oligonucleotides: proof of sequence specificity in cell culture and in vivo rat experiments. Antisense Nucleic Acid Drug Dev 1997; 7: 567-73.
  • 39 Pawlowska Z, Chabielska E, Kobylanska A, Maciaszek A, Swiatkowska M, Buczko W, Stec WJ, Cierniewski CS. Regulation of PAI-1 concentration in platelets by systemic administration of antisense oligonucleotides to rats. Thromb Haemost 2001; 85: 1086-9.
  • 40 Nielsen LS, Andreasen PA, Grondahl Hansen J, Huang JY, Kristensen P, Dano K. Monoclonal antibodies to human 54,000 molecular weight plasminogen activator inhibitor from fibrosarcoma cells- inhibitor neutralization and one-step affinity purification. Thromb Haemost 1986; 55: 206-12.
  • 41 Keijer J, Linders M, van Zonneveld AJ, Ehrlich HJ, de Boer JP, Pannekoek H. The interaction of plasminogen activator inhibitor 1 with plasminogen activators (tissue-type and urokinase-type) and fibrin: localization of interaction sites and physiologic relevance. Blood 1991; 78: 401-9.
  • 42 Debrock S, Declerck PJ. Neutralization of plasminogen activator inhibitor-1 inhibitory properties: identification of two different mechanisms. Biochim Biophys Acta 1997; 1337: 257-66.
  • 43 Levi M, Biemond BJ, van Zonneveld AJ, ten Cate JW, Pannekoek H. Inhibition of plasmino-gen activator inhibitor-1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis [see comments]. Circulation 1992; 85: 305-12.
  • 44 Biemond BJ, Levi M, Coronel R, Janse MJ, ten Cate JW, Pannekoek H. Thrombolysis and reocclusion in experimental jugular vein and coronary artery thrombosis. Effects of a plasminogen activator inhibitor type 1-neutralizing monoclonal antibody. Circulation 1995; 91: 1175-81.
  • 45 Berry CN, Lunven C, Lechaire I, Girardot C, OConnor SE. Antithrombotic activity of a monoclonal antibody inducing the substrate form of plasminogen activator inhibitor type 1 in rat models of venous and arterial thrombosis. Br J Pharmacol 1998; 125: 29-34.
  • 46 Montes R, Declerck PJ, Calvo A, Montes M, Hermida J, Munoz MC, Rocha E. Prevention of renal fibrin deposition in endotoxin-induced DIC through inhibition of PAI-1. Thromb Haemost 2000; 84: 65-70.
  • 47 Debrock S, Sironi L, Declerck PJ. Cloning of a single-chain variable fragment (scFv) switching active plasminogen activator inhibitor-1 to substrate. Gene 1997; 189: 83-8.
  • 48 Gils A, Knockaert I, Declerck PJ. Substrate behavior of plasminogen activator inhibitor-1 is not associated with a lack of insertion of the reactive site loop. Biochemistry 1996; 35: 7474-81.
  • 49 Jönsson U, Malmqvist M. Real time biospecific interaction analysis. The integration of surface plasmon resonance detection, general biospecific interface chemistry and microfluidics into one analytical system. In Turner A, ed. Advances in biosensors. London: JAI Press 1992; 291-336.
  • 50 Verheijen JH, Chang GT, Kluft C. Evidence for the occurrence of a fast-acting inhibitor for tissue-type plasminogen activator in human plasma. Thromb Haemost 1984; 51: 392-5.
  • 51 Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. Sequences of Proteins of Immunological Interest. NIH Publication No 91-324. 1991 5th edition.
  • 52 Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM. Conformations of the third hyper-variable region in the VH domain of immunoglobulins. J Mol Biol 1998; 275: 269-94.
  • 53 Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR. et al. Conformations of immunoglobulin hypervariable regions. Nature 1989; 342: 877-83.
  • 54 Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 1997; 273: 927-48.
  • 55 Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wolle J, Pluckthun A, Virnekas B. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 2000; 296: 57-86.
  • 56 Xiang J, Srivamadan M, Rajala R, Jia Z. Study of B72.3 combining sites by molecular modeling and site-directed mutagenesis. Protein Eng 2000; 13: 339-44.