Thromb Haemost 2003; 89(02): 382-392
DOI: 10.1055/s-0037-1613456
Cellular Proteolysis and Oncology
Schattauer GmbH

Human/chicken urokinase chimeras demonstrate sequences outside the serine protease domain that dictate autoactivation

Ronald T. Aimes
1   The Scripps Research Institute, Department of Cell Biology, VB-1, La Jolla, California, USA
,
Karine Regazzoni
1   The Scripps Research Institute, Department of Cell Biology, VB-1, La Jolla, California, USA
,
James P. Quigley
1   The Scripps Research Institute, Department of Cell Biology, VB-1, La Jolla, California, USA
› Author Affiliations
Further Information

Publication History

Received 08 October 2002

Accepted after revision 26 November 2002

Publication Date:
07 December 2017 (online)

Summary

Mammalian urokinase-type plasminogen activator (uPA) is produced as a stable single polypeptide chain zymogen and requires a distinct proteolytic cleavage to become an active, two-chain enzyme. In contrast, chicken uPA, both native and recombinant, is found predominantly as a two-chain, active enzyme even in the absence of plasmin, a physiological activator. Here we show that the proclivity to autoactivate is not a unique property of the chicken uPA catalytic domain but requires sequences distinct from and independent of the serine protease domain. Human/chicken chimeric uPA molecules and point mutants were used to determine the structural requirements for uPA autoactivation versus zymogen stability. The amino terminal fragment of chicken uPA engineered onto the human uPA molecule can induce the autoactivation of the human uPA. In fact, the first twenty residues of the chicken uPA are necessary and sufficient to induce the autoactivation of chicken and human uPA. These results indicate that sequence motifs, distal to the active site, control the substrate specificity and catalytic efficiency of uPA activity in autolytic activation.

 
  • References

  • 1 Irigoyen JP, Munoz-Canoves P, Montero L, Koziczak M, Nagamine Y. The plasminogen activator system: biology and regulation. Cell Mol Life Sci 1999; 56: 104-32.
  • 2 Kasai S, Arimura H, Nishida M, Suyama T. Primary structure of single-chain pro-urokinase. J Biol Chem 1985; 260: 12382-9.
  • 3 Pannell R, Gurewich V. Activation of plasminogen by single-chain urokinase or by two-chain urokinase – a demonstration that single-chain urokinase has a low catalytic activity (pro-urokinase). Blood 1987; 69: 22-6.
  • 4 Lijnen HR, Van Hoef B, Nelles L, Collen D. Plasminogen activation with single-chain urokinase-type plasminogen activator (scu-PA). Studies with active site mutagenized plasminogen (Ser740 Ala) and plasmin-resistant scu-PA (Lys158 Glu). J Biol Chem 1990; 265: 5232-6.
  • 5 Petersen LC, Lund LR, Nielsen LS, Dano K, Skriver L. One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J Biol Chem 1988; 263: 11189-95.
  • 6 Bugge TH, Flick MJ, Daugherty CC, Degen JL. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 1995; 9: 794-807.
  • 7 Lee SL, Dickson RB, Lin CY. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 2000; 275: 36720-5.
  • 8 Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 2000; 275: 26333-42.
  • 9 List K, Jensen ON, Bugge TH, Lund LR, Ploug M, Dano K. et al. Plasminogen-independent initiation of the pro-urokinase activation cascade in vivo. Activation of pro-urokinase by glandular kallikrein (mGK-6) in plasminogen-deficient mice. Biochemistry 2000; 39: 508-15.
  • 10 Higazi A, Cohen RL, Henkin J, Kniss D, Schwartz BS, Cines DB. Enhancement of the enzymatic activity of single-chain urokinase plasminogen activator by soluble urokinase receptor. J Biol Chem 1995; 270: 17375-80.
  • 11 Manchanda N, Schwartz BS. Single chain urokinase. Augmentation of enzymatic activity upon binding to monocytes. J Biol Chem 1991; 266: 14580-4.
  • 12 Leslie ND, Kessler CA, Bell SM, Degen JL. The chicken urokinase-type plasminogen activator gene. J Biol Chem 1990; 265: 1339-44.
  • 13 Alexander DS, Sipley JD, Quigley JP. Autoactivation of avian urokinase-type plasminogen activator (uPA). A novel mode of initiation of the uPA/plasmin cascade. J Biol Chem 1998; 273: 7457-61.
  • 14 Sipley JD, Alexander DS, Testa JE, Quigley JP. Introduction of an RRHR motif into chicken urokinase-type plasminogen activator (ch-uPA) confers sensitivity to plasminogen activator inhibitor (PAI)-1 and PAI-2 and allows ch-uPA-mediated extracellular matrix degradation to be controlled by PAI-1. Proc Natl Acad Sci USA 1997; 94: 2933-8.
  • 15 Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Bio/Technology 1992; 10: 169-75.
  • 16 Berkenpas MB, Quigley JP. Transformation-dependent activation of urokinase-type plasminogen activator by a plasmin-independent mechanism: involvement of cell surface membranes. Proc Natl Acad Sci USA 1991; 88: 7768-72.
  • 17 Stump DC, Thienpont M, Collen D. Urokinase-related proteins in human urine. Isolation and characterization of single-chain urokinase (pro-urokinase) and urokinase-inhibitor complex. J Biol Chem 1986; 261: 1267-73.
  • 18 Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 1987; 262: 10035-8.
  • 19 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacterio-phage T4. Nature 1970; 227: 680-5.
  • 20 Towbin H, Staehelin T, Gordon J. Electro-phoretic transfer of proteins from polyacryl-amide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci USA 1979; 76: 4350-4.
  • 21 Fussi F. Aprotinin: mechanism of action and therapeutical uses. Boll Chim Farm 1980; 119: 631-46.
  • 22 Nelles L, Lijnen HR, Collen D, Holmes WE. Characterization of recombinant human single chain urokinase-type plasminogen activator mutants produced by site-specific mutagenesis of lysine 158. J Biol Chem 1987; 262: 5682-9.
  • 23 Gunzler WA, Steffens GJ, Otting F, Kim SM, Frankus E, Flohe L. The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain. Hoppe Seylers Z Physiol Chem 1982; 363: 1155-65.
  • 24 Ellis V, Scully MF, Kakkar VV. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J Biol Chem 1989; 264: 2185-8.
  • 25 Stephens RW, Pollanen J, Tapiovaara H. et al. Activation of pro-urokinase and plasminogen on human sarcoma cells: a proteolytic system with surface-bound reactants. J Cell Biol 1989; 108: 1987-95.
  • 26 Andreasen PA, Kjøller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72: 1-22.
  • 27 Higazi AA, Mazar A, Wang J, Reilly R, Henkin J, Kniss D. et al. Single-chain urokinase-type plasminogen activator bound to its receptor is relatively resistant to plasminogen activator inhibitor type 1. Blood 1996; 87: 3545-9.
  • 28 Hooper JD, Clements JA, Quigley JP, Antalis TM. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 2001; 276: 857-60.
  • 29 Kannemeier C, Feussner A, Stohr HA, Weisse J, Preissner KT, Romisch J. Factor VII and single-chain plasminogen activator-activating protease: activation and autoactivation of the proenzyme. Eur J Biochem 2001; 268: 3789-96.
  • 30 Etscheid M, Hunfeld A, Konig H, Seitz R, Dodt J. Activation of proPHBSP, the zymogen of a plasma hyaluronan binding serine protease, by an intermolecular autocatalytic mechanism. Biol Chem 2000; 381: 1223-31.
  • 31 Denmeade SR, Lovgren J, Khan SR, Lilja H, Isaacs JT. Activation of latent protease function of pro-hK2, but not pro-PSA, involves autoprocessing. Prostate 2001; 48: 122-6.
  • 32 Donate F, Kelly CR, Ruf W, Edgington TS. Dimerization of tissue factor supports solu-tion-phase autoactivation of factor VII without influencing proteolytic activation of factor X. Biochemistry 2000; 39: 11467-76.
  • 33 Kowalska-Loth B, Zakrzewski K. The activation by staphylokinase of human plasminogen. Acta Biochim Pol 1975; 22: 327-39.
  • 34 Wang S, Reed GL, Hedstrom L.. Zymogen activation in the streptokinase-plasminogen. complex. Ile1 is required for the formation of a functional active site. Eur J Biochem 2000; 267: 3994-4001.
  • 35 Sazonova IY, Houng AK, Chowdhry SA, Robinson BR, Hedstrom L, Reed GL. The mechanism of a bacterial plasminogen activator intermediate between streptokinase and staphylokinase. J Biol Chem 2001; 276: 12609-13.
  • 36 Testa JE, Stefansson S, Sioussat T, Quigley JP. Avian urokinase-type plasminogen activator (u-PA) lacks the putative binding site for plasminogen activator inhibitor (PAI) and is resistant to inhibition by human PAI-1 and PAI-2. Fibrinolysis 1995; 9: 93-9.