Thromb Haemost 2002; 88(01): 83-88
DOI: 10.1055/s-0037-1613158
Review Article
Schattauer GmbH

Characterization of the Binding of Urokinase-Type Plasminogen Activator to the Asialoglycoprotein Receptor

D. C. Rijken
1   Gaubius Laboratory, TNO Prevention and Health, Leiden, The Netherlands
,
M. E. van der Kaaden
2   Division of Biopharmaceutics, Sylvius Laboratory, Leiden/Amsterdam Center for Drug Research University of Leiden, Leiden, The Netherlands
,
E. Groeneveld
1   Gaubius Laboratory, TNO Prevention and Health, Leiden, The Netherlands
,
M. M. Barrett-Bergshoeff
1   Gaubius Laboratory, TNO Prevention and Health, Leiden, The Netherlands
,
Th. J. C. van Berkel
2   Division of Biopharmaceutics, Sylvius Laboratory, Leiden/Amsterdam Center for Drug Research University of Leiden, Leiden, The Netherlands
,
J. Kuiper
2   Division of Biopharmaceutics, Sylvius Laboratory, Leiden/Amsterdam Center for Drug Research University of Leiden, Leiden, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 20 September 2001

Accepted after resubmission 10 April 2002

Publication Date:
09 December 2017 (online)

Summary

In order to study the role of the asialoglycoprotein receptor (ASGPr) in the rapid plasma clearance of urokinase-type plasminogen activator (u-PA), a microtiter plate binding assay was developed using ASGPr purified from rat liver extracts. Urinary two-chain u-PA bound to immobilized ASGPr in a saturable manner with an EC50 of 0.2 µM. Binding was inhibited by rabbit antibodies against the ASGPr. In line with the known carbohydrate specificity of the ASGPr, GalNAc proved to be the most effective inhibitor from a series of monosaccharides, followed by Gal and Fuc, whereas GlcNAc was ineffective. The N-linked oligosaccharides of urinary u-PA do not terminate with the common Gal-GlcNAc element, but with a GalNAc-GlcNAc element which is partially sulfated. Sulfated forms of u-PA were separated from non-sulfated forms by using the lectin Wisteria floribunda agglutinin. Only the non-sulfated forms of u-PA (30% of the total) appeared to bind to the ASGPr. From different u-PA preparations used for thrombolytic therapy only urinary u-PA and u-PA produced by kidney cell cultures strongly bound to the ASGPr, whereas (recombinant) u-PA expressed in mouse myeloma cells, Chinese hamster ovary cells or E. coli scarcely bound to the receptor. It is concluded that u-PA bearing non-sulfated GalNAc-GlcNAc elements is specifically recognized by the ASGPr present on liver cells.

 
  • References

  • 1 Gaffney PJ, Edgell TA, Whitton CM. The haemostatic balance – Astrup revisited. Haemostasis 1999; 29: 58-71.
  • 2 Lijnen HR. Elements of the fibrinolytic system. Ann NY Acad Sci 2001; 936: 226-36.
  • 3 Rijken DC. Plasminogen activators and plasminogen activators inhibitors: biochemical aspects. Baillière’s Clin Haematol 1995; 08: 291-312.
  • 4 Rijken DC, Sakharov DV. Molecular transport during fibrin clot lysis. Fibrinolysis Proteol 2000; 14: 98-113.
  • 5 Anderson HV, Willerson JT. Thrombolysis in acute myocardial infarction. N Engl J Med 1993; 329: 703-9.
  • 6 Verstraete M, Bounameaux H, de Cock F, van de Werf F, Collen D. Pharmacokinetics and systemic fibrinogenolytic effects of recombinant human tissue-type plasminogen activator (rt-PA) in humans. J Pharm Exp Ther 1985; 235: 506-12.
  • 7 Van de Werf F, Vanhaecke J, de Geest H, Verstraete M, Collen D. Coronary thrombolysis with recombinant single-chain urokinase-type plasminogen activator in patients with acute myocardial infarction. Circulation 1986; 74: 1066-70.
  • 8 Bu G, Warshawsky I, Schwartz AL. Cellular receptors for the plasminogen activators. Blood 1994; 83: 3427-36.
  • 9 Kentzer EJ, Buko A, Menon G, Sarin VK. Carbohydrate composition and presence of a fucose-protein linkage in recombinant human pro-urokinase. Biochem Biophys Res Comm 1990; 171: 401-6.
  • 10 Buko AM, Kentzer EJ, Petros A, Menon G, Zuiderweg ERP, Sarin VK. Characterization of a posttranslational fucosylation in the growth factor domain of urinary plasminogen activator. Proc Natl Acad Sci USA 1991; 88: 3992-6.
  • 11 Noorman F, Rijken DC. Regulation of tissue-type plasminogen activator concentrations by clearance via the mannose receptor and other receptors. Fibrinolysis Proteol 1997; 11: 173-86.
  • 12 Kuiper J, Rijken DC, de Munk GAW, van Berkel ThJC. In vivo and in vitro interaction of high and low molecular weight single-chain urokinase-type plasminogen activator with rat liver cells. J Biol Chem 1992; 267: 1589-95.
  • 13 van der Kaaden ME, Rijken DC, Groeneveld E, van Berkel ThJC, Kuiper J. Native and non-glycosylated recombinant single-chain urokinase-type plasminogen activator are recognized by different receptor systems on rat parenchymal liver cells. Thromb Haemost 1995; 74: 722-9.
  • 14 van der Kaaden ME, Rijken DC, Kruijt JK, van Berkel ThJC, Kuiper J. The role of the low-density lipoprotein receptor-related protein (LRP) in the plasma clearance and liver uptake of recombinant single-chain urokinasetype plasminogen activator in rats. Thromb Haemost 1997; 77: 710-7.
  • 15 van der Kaaden ME, Kuiper J, Groeneveld E, van Berkel ThJC, Rijken DC. Plasma clearance of urokinase-type plasminogen activator. Fibrinolysis Proteol 1998; 12: 251-8.
  • 16 White WF, Barlow GH, Mozen MM. The isolation and characterization of plasminogen activators (urokinase) from human urine. Biochemistry 1966; 05: 2160-9.
  • 17 de Munk GAW, Groeneveld E, Rijken DC. Acceleration of the thrombin inactivation of single chain urokinase-type plasminogen activator (pro-urokinase) by thrombomodulin. J Clin Invest 1991; 88: 1680-4.
  • 18 Nauland U, Rijken DC. Activation of thrombin-inactivated single-chain urokinase-type plasminogen activator by dipeptidyl peptidase I (cathepsin C). Eur J Biochem 1994; 223: 497-501.
  • 19 Lijnen HR, Nelles L, Holmes WE, Collen D. Biochemical and thrombolytic properties of a low molecular weight form (comprising Leu144 through Leu411) of recombinant single-chain urokinase-type plasminogen activator. J Biol Chem 1988; 263: 5594-8.
  • 20 Bergwerff AA, van Oostrum J, Kamerling JP, Vliegenthart JFG. The major N-linked carbohydrate chains from human urokinase. The occurrence of 4-O-sulfated, (α2-6)-sialylated or (α1-3)-fucosylated N-acetylgalactosamine(β1-4)-N-acetylglycosamine elements. Eur J Biochem 1995; 228: 1009-19.
  • 21 Kurokawa T, Tsuda M, Sugino Y. Purification and characterization of a lectin from Wistaria floribunda seeds. J Biol Chem 1976; 251: 5686-93.
  • 22 Smith PL, Skelton TP, Fiete D, Dharmesh SM, Beranek MC, MacPhail L, Broze Jr GJ, Baenziger JU. The asparagine-linked oligosaccharides on tissue factor pathway inhibitor terminate with SO4-4GalNAcβ1, 4GlcNAc β1,2 Man α. J Biol Chem 1992; 267: 19140-6.
  • 23 Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Ann Rev Biochem 1982; 51: 531-54.
  • 24 Schwartz AL. The hepatic asialoglycoprotein receptor. CRC Crit Rev Biochem 1984; 16: 207-33.
  • 25 Drickamer K. Biology of animal lectins. Annu Rev Cell Biol 1993; 09: 237-64.
  • 26 Sarkar M, Liao J, Kabat EA, Tanabe T, Ashwell G. The binding site of rabbit hepatic lectin. J Biol Chem 1979; 254: 3170-3.
  • 27 Bergwerff AA, Thomas-Oates JE, van Oostrum J, Kamerling JP, Vliegenthart JFG. Human urokinase contains GalNAc β1-4(Fuc α.1-3)GlcNAc β1-2 as novel terminal element in N-linked carbohydrate chains. FEBS Lett 1992; 314: 389-94.
  • 28 Baenziger JU, Maynard Y. Human hepatic lectin; Physiochemical properties and specificity. J Biol Chem 1980; 255: 4607-13.
  • 29 Iobst ST, Drickamer K. Selective sugar binding to the carbohydrate recognition domains of the rat hepatic and macrophage asialoglycoprotein receptors. J Biol Chem 1996; 271: 6686-93.
  • 30 Kolatkar AR, Leung AK, Isecke R, Brossmer R, Drickamer K, Weis WI. Mechanism of N-acetylgalactosamine binding to a C-type animal lectin carbohydrate-recognition domain. J Biol Chem 1998; 273: 19502-8.
  • 31 Lee RT, Lee YC. Preparation of cluster glycosides of N-acetylgalactosamine that have subnanomolar binding constants towards the mammalian hepatic Gal/GalNAc-specific receptor. Glycoconjugate J 1987; 04: 317-28.
  • 32 Chiu MH, Tamura T, Wadhwa MS, Rice KG. In vivo targeting function of N-linked oligosaccharides with terminating galactose and N-acetylgalactosamine residues. J Biol Chem 1994; 269: 16195-202.
  • 33 Rensen PC, Sliedrecht LA, Ferns M, Kieviet E, van Rossenberg SM, van Leeuwen SH, van Berkel TJ, Biessen EA. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J Biol Chem 2001; 276 (40) 37577-84.
  • 34 Kamerling JP, Hård K, Vliegenthart JFG. Structural analysis of carbohydrate chains of native and recombinant-DNA glycoproteins. In: From clone to clinic. Crommelin DJA, Schellekens H. eds. Kluwer Academic Publishers. 1990: 295-304.
  • 35 Henkin J, Dudlak D, Beebe DP, Sennello L. High sialic acid content slows prourokinase turnover in rabbits. Thromb Res 1991; 63: 215-25.
  • 36 Fiete D, Srivastava V, Hindsgaul O, Baenziger JU. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc β1,4GlcNAc β1,2Manα that mediates rapid clearance of lutropin. Cell 1991; 67: 1103-0.
  • 37 Fiete D, Baenzigert JU. Isolation of the SO4-4-GalNAc β1,4GlcNAc β1, 2 Manα-specific receptor from rat liver. J Biol Chem 1997; 272: 14629-37.
  • 38 Roseman DS, Baenziger JU. Molecular basis of lutropin recognition by the mannose/GalNAc-4-SO4 receptor. PNAS 2000; 97: 9949-54.