Synlett 2019; 30(05): 610-614
DOI: 10.1055/s-0037-1612086
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Synthesis of S-Aryl Dithiocarbamates from Tetraalkylthiuram Disulfides and Aryl Iodides in Water

Xiang-mei Wu*
Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, P. R. of China   Email: lswxm7162@163.com   Email: gbyan@lsu.edu.cn
,
Guo-bing Yan
› Author Affiliations
We are grateful for financial support from the Natural Science ­Foundation of Zhejiang Province (No. LY13B020005) and the National Natural Science Foundation of China (No. 21572094).
Further Information

Publication History

Received:20.11.2018

Accepted after revision: 07 January 2019

Publication Date:
05 February 2019 (online)


Abstract

An efficient approach for the copper-catalyzed synthesis of aryl dithiocarbamates from aryl iodides and tetraalkylthiuram disulfides in water is described. Without additional ligand and organic solvent, the coupling reaction could provide a series of S-aryl dithiocarbamates in moderate to good yields.

Supporting Information

 
  • References

    • 1a Kaldor SW, Kalish VJ, Davies JF, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH. J. Med. Chem. 1997; 40: 3979
    • 1b Bonnet B, Soullez D, Girault S, Maes L, Landry V, Davioud-Charvet E, Sergheraert C. Bioorg. Med. Chem. 2000; 8: 95
    • 1c Elgemeie GH, Sayed SH. Synthesis 2001; 1747
    • 1d Wang Y, Chackalamannil S, Chang W, Greenlee W, Ruperto V, Duffy RA, McQuade R, Lachowicz JE. Bioorg. Med. Chem. Lett. 2001; 11: 891
    • 1e Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, von Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 1f De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, Wilcox E, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2004; 47: 6120
    • 1g Alcaraz M.-L, Atkinson S, Cornwall P, Foster AC, Gill DM, Humphries LA, Keegan PS, Kemp R, Merifield E, Nixon RA, Noble AJ, O’Beirne D, Patel ZM, Perkins J, Rowan P, Sadler P, Singleton JT. Org. Process Res. Dev. 2005; 9: 555
    • 1h De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947
    • 1i Gangjee A, Zeng Y, Talreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
    • 1j Koutsoumpli GE, Dimaki VD, Thireou TN, Eliopoulos EE, Labrou NE, Varvounis GI, Clonis YD. J. Med. Chem. 2012; 55: 6802
    • 1k Woo SY, Kim JH, Moon MK, Han SH, Yeon SK, Choi JW, Jang BK, Song HJ, Kang YG, Kim JW, Lee J, Kim DJ, Hwang O, Park KD. J. Med. Chem. 2014; 57: 1473
    • 1l Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 2a Kapanda CN, Masquelier J, Labar G, Muccioli GG, Poupaert JH, Lambert DM. J. Med. Chem. 2012; 55: 5774
    • 2b Ronconi L, Marzano C, Zanello P, Corsini M, Miolo G, Macca C, Trevisan A, Fregona D. J. Med. Chem. 2006; 49: 1648
    • 2c Erian AW, Sherif SM. Tetrahedron 1999; 55: 7957
    • 2d Beji M, Sbihi H, Baklouti A, Cambon A. J. Fluorine Chem. 1999; 99: 17
    • 2e Walter W, Bode K.-D. Angew. Chem., Int. Ed. Engl. 1967; 6: 281
    • 3a Caldas ED, Hosana Conceicuä M, Miranda MC. C, Souza L, Lima JF. J. Agric. Food Chem. 2001; 49: 4521
    • 3b Rafin C, Veignie E, Sancholle M, Postal D, Len C, Villa P, Ronco G. J. Agric. Food Chem. 2000; 48: 5283
    • 3c Len C, Postal D, Ronco G, Villa P, Goubert C, Jeufrault E, Mathon B, Simon H. J. Agric. Food Chem. 1997; 45: 3
    • 3d Chen YS, Schuphan I, Casida JE. J. Agric. Food Chem. 1979; 27: 709
    • 4a Cheng Y, Liu X, Dong Z.-B. Eur. J. Org. Chem. 2018; 815
    • 4b Liu X, Cao Q, Xu W, Zeng M.-T, Dong Z.-B. Eur. J. Org. Chem. 2017; 5795
    • 4c Krasovskiy A, Gavryushin A, Knochel P. Synlett 2005; 2691
    • 4d Jen K.-Y, Cava MP. Tetrahedron Lett. 1982; 23: 2001
  • 5 Hogarth G. Prog. Inorg. Chem. 2005; 53: 7
    • 6a Sha Q, Wei Y.-Y. Org. Biomol. Chem. 2013; 11: 5615
    • 6b Ranu BC, Saha A, Banerjee S. Eur. J. Org. Chem. 2008; 519
    • 6c Azizi N, Aryanasab F, Saidi MR. Org. Lett. 2006; 8: 5275
    • 6d Krasovskiy A, Gavryushin A, Knochel P. Synlett 2006; 792
    • 6e Azizi N, Aryanasab F, Torkiyan L, Ziyaei A, Saidi MR. J. Org. Chem. 2006; 71: 3634
    • 6f Chaturvedi D, Ray S. Tetrahedron Lett. 2006; 47: 1307
    • 6g Salvatore RN, Sahaband S, Jung KW. Tetrahedron Lett. 2001; 42: 2055
    • 6h Hori I, Hayashi T, Midorikawa H. Synthesis 1974; 705
    • 6i Clifford AM, Lichty JG. J. Am. Chem. Soc. 1932; 54: 1163
  • 7 Chen Z.-C, Jin Y.-Y, Stangl PJ. J. Org. Chem. 1987; 52: 4117
  • 8 Liu Y.-Y, Bao W.-L. Tetrahedron Lett. 2007; 48: 4785
  • 9 Bhadra S, Saha A, Ranu BC. Green Chem. 2008; 10: 1224
  • 10 Chatterjee T, Bhadra S, Ranu BC. Green Chem. 2011; 13: 1837
  • 11 Qi C.-R, Guo T.-Z, Xiong W.-F. Synlett 2016; 27: 2626
  • 12 Gronowitz S, Hörnfeldt A.-B, Temciuc M. Synthesis 1993; 483
  • 14 Krasovskiy A, Malakhov V, Gavryushin A, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 6040
  • 15 Dong Z.-B, Liu X, Bolm C. Org. Lett. 2017; 19: 5916
  • 16 Zeng M.-T, Xu W, Liu X, Chang C.-Z, Zhu H, Dong Z.-B. Eur. J. Org. Chem. 2017; 6060
  • 17 Xu W, Gao F, Dong Z.-B. Eur. J. Org. Chem. 2018; 821
  • 18 General Procedure Aryl iodides (1.0 mmol), tetraalkylthiuram disulfides (1.0 mmol), Cu(acac)2 (0.1 mmol), Na2CO3 (1.0 mmol), n-Bu4NBr (0.1 mmol), and H2O (2.0 mL) were taken in a 25 mL sealed tube. The reaction mixture was stirred at 100 °C for 12 h. After cooling to room temperature, the product was diluted with H2O (5 mL) and extracted with EtOAc (3 × 10 mL). The extracts were combined and washed by brine (3 × 10 mL), dried over MgSO4, filtered, evaporated, and purified by chromatography on silica gel to obtain the desired products with ethyl acetate/hexane (v/v = 1:3 to ca. 1:10). The products were characterized by their spectral and analytical data and compared with those of the known compounds (see Supporting Information). Typical Data for Representative Compound Dimethyl-dithiocarbamic Acid 3-Methylthio-phenyl Ester (Table2, Entry 17) 1H NMR (CDCl3, 300 MHz): δ = 7.34–7.33 (m, 3 H), 7.25–7.24 (m, 1 H), 3.54 (s, 3 H), 3.47 (s, 3 H), 2.48 (s, 3 H). 13C NMR (CDCl3, 75 MHz): δ = 197.0, 139.6, 134.3, 133.3, 132.4, 129.3, 128.0, 45.7, 42.1, 15.8. GC–MS (EI): m/z = 243 [M+].
  • 19 He G.-Z, Huang Y, Tong Y, Zhang J, Zhao D, Zhou S.-L, Han S.-Q. Tetrahedron Lett. 2013; 54: 5318