Subscribe to RSS
DOI: 10.1055/s-0037-1611921
The Trouble with Five: New Synthetic Strategies toward C5 -Symmetric Pillar[5]arenes and Beyond
This work was supported by the 973 National Basic Research Program of China (2015CB856500) and the National Thousand Young Talents Program of China.Publication History
Received: 28 June 2019
Accepted after revision: 16 August 2019
Publication Date:
03 September 2019 (online)
Abstract
Rim-differentiated pillar[5]arenes (P[5]s) are intriguing macrocyclic molecular platforms with C 5-symmetry, but their conventional statistical syntheses suffer from low yields and laborious separation. Our group recently reported a ‘pre-oriented’ protocol that results in highly selective production of C 5-symmetric P[5]s among four constitutional isomers. Subsequently, we devised a more general divergent synthetic route starting with a common P[5] precursor with rim differentiation, followed by a series of high-yielding reactions that permit successive transformations of both rims freely. As a result, a variety of rim-differentiated P[5]s can be made to order in gram-scale quantities. This total solution not only populates the list of C 5-symmetric P[5]s, but also enables further design and synthesis of assorted five-fold organic building blocks towards complex supramolecular architectures.
-
References
- 1 Bruns CJ, Stoddart JF. The Nature of the Mechanical Bond: From Molecules to Machines . Wiley; Hoboken: 2017
- 2a Hargittai M, Hargittai I. Symmetry Through the Eyes of a Chemist, 3rd ed. Springer Netherlands; Dordrecht: 2009
- 2b Darvas G. Symmetry . Birkhäuser Verlag; Basel: 2007
- 3 Raymond KN, Brown CJ. Top. Curr. Chem. 2012; 323: 1
- 4a Seidel SR, Stang P. Acc. Chem. Res. 2002; 35: 972
- 4b Fujita D, Ueda Y, Sato S, Mizuno N, Kumasaka T, Fujita M. Nature 2016; 540: 563
- 5a Stang PJ, Olenyuk B. Acc. Chem. Res. 1997; 30: 502
- 5b Schoedel A, Li M, Li D, O’Keeffe M, Yaghi OM. Chem. Rev. 2016; 116: 12466
- 5c Liu Y, O’Keeffe M, Treacy MM. J, Yaghi OM. Chem. Soc. Rev. 2018; 47: 4642
- 6a van Gorp JJ, Vekemans JA. J. M, Meijer EW. J. Am. Chem. Soc. 2002; 124: 14759
- 6b Aida T, Meijer EW, Stupp SI. Science 2012; 335: 813
- 7 Walba DM. Tetrahedron 1985; 41: 3161
- 8 Fivefold Symmetry . Hargittai I. World Scientific; Singapore: 1992
- 9 Barth WE, Lawton RG. J. Am. Chem. Soc. 1966; 88: 380
- 10 Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. Nature 1985; 318: 162
- 11 Ninagawa A, Matsuda H. Makromol. Chem., Rapid Commun. 1982; 3: 65
- 12 Nakagawa T, Ueno K, Kashiwa M, Watanabe J. Tetrahedron 1994; 35: 1921
- 13 Kim J, Jung I.-S, Kim S.-Y, Lee E, Kang J.-K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc. 2000; 122: 540
- 14 Ogoshi T, Kanai S, Fujinami S, Yamagishi TA, Nakamoto Y. J. Am. Chem. Soc. 2008; 130: 5022
- 15a Qin B, Chen X, Fang X, Shu Y, Yip YK, Yan Y, Pan S, Ong WQ, Ren C, Su H, Zeng H. Org. Lett. 2008; 10: 5127
- 15b Qin B, Ren C, Ye R, Sun C, Chiad K, Chen X, Li Z, Xue F, Su H, Chass G, Zeng H. J. Am. Chem. Soc. 2010; 132: 9564
- 15c Ren C, Zhou F, Qin B, Ye R, Shen S, Su H, Zeng H. Angew. Chem. Int. Ed. 2011; 50: 10612
- 15d Ren C, Maurizot V, Zhao H, Shen J, Zhou F, Ong W, Du Z, Zhang K, Su H, Zeng H. J. Am. Chem. Soc. 2011; 133: 13930
- 16a Guieu S, Crane AK, MacLachlan MJ. Chem. Commun. 2011; 47: 1169
- 16b Nam S, Ware DC, Brothers PJ. Org. Biomol. Chem. 2018; 16: 6460
- 16c Nam S, Ware DC, Brothers PJ. RSC Adv. 2019; 9: 8389
- 17 Lee S, Chen C.-H, Flood AH. Nat. Chem. 2013; 5: 704
- 18a Evans PJ, Darzi ER, Jasti R. Nat. Chem. 2014; 6: 404
- 18b Kayahara E, Patel VK, Yamago S. J. Am. Chem. Soc. 2014; 136: 2284
- 19 Cao D, Kou Y, Liang J, Chen Z, Wang L, Meier H. Angew. Chem. Int. Ed. 2009; 48: 9721
- 20 Hu X.-B, Chen Z, Chen L, Zhang L, Hou J.-L, Li Z.-T. Chem. Commun. 2012; 48: 10999
- 21a Ogoshi T, Yamagishi T.-a, Nakamoto Y. Chem. Rev. 2016; 116: 7937
- 21b Pillararenes . Ogoshi T. Royal Society of Chemistry; Cambridge: 2016
- 22 Schneebeli ST, Cheng C, Hartlieb KJ, Strutt NL, Sarjeant AA, Stern CL, Stoddart JF. Chem. Eur. J. 2013; 19: 3860
- 23 Chen H, Fan J, Hu X, Ma J, Wang S, Li J, Yu Y, Jia X, Li C. Chem. Sci. 2015; 6: 197
- 24 Boinski T, Cieszkowski A, Rosa B, Szumna A. J. Org. Chem. 2015; 80: 3488
- 25 Wu J.-R, Mu AU, Li B, Wang C.-Y, Fang L, Yang Y.-W. Angew. Chem. Int. Ed. 2018; 57: 9853
- 26a D’Souza VT, Lipkowitz KB. Chem. Rev. 1998; 98: 1741
- 26b Wang B, Zaborova E, Guieu S, Petrillo M, Blériot Y, Ménand M, Zhang Y, Sollogoub M. Nat. Commun. 2014; 5: 5354
- 27a Gutsche CD. Calixarenes 1989
- 27b Calixarenes and Beyond . Neri P, Sessler JL, Wang M. Springer International; Basel: 2016
- 27c Lavendomme R, Zahim S, De Leener G, Inthasot A, Mattiuzzi A, Luhmer M, Reinaud O, Jabin I. Asian J. Org. Chem. 2015; 4: 710
- 28 Lavendomme R, Leroy A, Luhmer M, Jabin I. J. Org. Chem. 2014; 79: 6563
- 29a Yan X, Wang F, Zheng B, Huang F. Chem. Soc. Rev. 2012; 41: 6042
- 29b Yu G, Jie K, Huang F. Chem. Rev. 2015; 115: 7240
- 30a Kitajima K, Ogoshi T, Yamagishi T.-a. Chem. Commun. 2014; 50: 2925
- 30b Ogoshi T, Yamafuji D, Yamagishi TA, Brouwer AM. Chem. Commun. 2013; 49: 5468
- 31 Adiri T, Marciano D, Cohen Y. Chem. Commun. 2013; 49: 7082
- 32a Nierengarten I, Guerra S, Holler M, Nierengarten J.-F, Deschenaux R. Chem. Commun. 2012; 48: 8072
- 32b Nierengarten I, Guerra S, Holler M, Karmazin-Brelot L, Barberá J, Deschenaux R, Nierengarten J.-F. Eur. J. Org. Chem. 2013; 2013: 3675
- 32c Pan S, Ni M, Mu B, Li Q, Hu X.-Y, Lin C, Chen D, Wang L. Adv. Funct. Mater. 2015; 25: 3571
- 33a Jie K, Zhou Y, Li E, Huang F. Acc. Chem. Res. 2018; 51: 2064
- 33b Li E, Jie K, Zhou Y, Zhao R, Huang F. J. Am. Chem. Soc. 2018; 140: 15070
- 33c Jie K, Zhou Y, Li E, Huang F. Angew. Chem. Int. Ed. 2018; 57: 12845
- 33d Jie K, Zhou Y, Li E, Zhao R, Liu M, Huang F. J. Am. Chem. Soc. 2018; 140: 3190
- 33e Li B, Wang B, Huang X, Dai L, Cui L, Li J, Jia X, Li C. Angew. Chem. Int. Ed. 2019; 58: 3885
- 33f Li E, Zhou Y, Zhao R, Jie K, Huang F. Angew. Chem. Int. Ed. 2019; 58: 3981
- 33g Wang Y, Xu K, Li B, Cui L, Li J, Jia X, Zhao H, Fang J, Li C. Angew. Chem. Int. Ed. 2019; 58: 10281
- 33h Wu J, Yang Y. J. Am. Chem. Soc. 2019; 141: 12280
- 34a Si W, Chen L, Hu X.-B, Tang G, Chen Z, Hou J.-L, Li Z.-T. Angew. Chem. Int. Ed. 2011; 50: 12564
- 34b Si W, Xin P, Li Z.-T, Hou J.-L. Acc. Chem. Res. 2015; 48: 1612
- 34c Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen C.-P. Angew. Chem. Int. Ed. 2019; 58: 2779
- 35 Strutt NL, Zhang H, Schneebeli ST, Stoddart JF. Acc. Chem. Res. 2014; 47: 2631
- 36 Bojtár M, Simon A, Bombicz P, Bitter I. Org. Lett. 2017; 19: 4528
- 37a Fu S, An G, Sun H, Luo Q, Hou C, Xu J, Dong Z, Liu J. Chem. Commun. 2017; 53: 9024
- 37b Han B, Zhu L, Wang X, Bai M, Jiang J. Chem. Commun. 2018; 54: 837
- 37c Meichsner E, Nierengarten I, Holler M, Chessé M, Nierengarten J.-F. Helv. Chim. Acta 2018; 101: e1800059
- 38a Mao W, Zhan S, Zhu B, Ma D. J. Org. Chem. 2018; 83: 4147
- 38b Lee E, Ryu H, Ju H, Kim S, Lee J.-E, Jung J.-H, Kuwahara S, Ikeda M, Habata Y, Lee S.-S. Chem. Eur. J. 2019; 25: 949
- 39a Kou Y, Tao H, Cao D, Fu Z, Schollmeyer D, Meier H. Eur. J. Org. Chem. 2010; 2010: 6464
- 39b Zhang Z, Luo Y, Xia B, Han C, Yu Y, Chen X, Huang F. Chem. Commun. 2011; 47: 2417
- 40a Yu G, Ma Y, Han C, Yao Y, Tang G, Mao Z, Gao C, Huang F. J. Am. Chem. Soc. 2013; 135: 10310
- 40b Yao Y, Xue M, Chen J, Zhang M, Huang F. J. Am. Chem. Soc. 2012; 134: 15712
- 41a Nishimura T, Sanada Y, Matsuo T, Okobira T, Mylonas E, Yagi N, Sakurai K. Chem. Commun. 2013; 49: 3052
- 41b Jie K, Zhou Y, Yao Y, Huang F. Chem. Soc. Rev. 2015; 44: 3568
- 42a Zhang H, Ma X, Nguyen KT, Zhao Y. ACS Nano 2013; 7: 7853
- 42b Yu G, Yu W, Zhao Z, Chi X, Mao Z, Gao C, Huang F. Adv. Funct. Mater. 2016; 26: 8999
- 43a Wang Y, Du J, Wang Y, Jin Q, Ji J. Chem. Commun. 2015; 51: 2999
- 43b Hu X, Gao L, Mosel S, Ehler M, Zellermann E, Jiang H, Knauer SK, Wang L, Schmuck C. Small 2018; 14: 1803952
- 43c Hu X.-Y, Liu X, Zhang W, Qin S, Yao C, Li Y, Cao D, Peng L, Wang L. Chem. Mater. 2016; 28: 3778
- 44a Zhou J, Chen M, Xie J, Diao G. ACS Appl. Mater. Interfaces 2013; 5: 11218
- 44b Luo L, Nie G, Tian D, Deng H, Jiang L, Li H. Angew. Chem. Int. Ed. 2016; 55: 12713
- 45 Zuilhof H. Acc. Chem. Res. 2016; 49: 274
- 46 Merritt EA, Hol WG. Curr. Opin. Struct. Biol. 1995; 5: 165
- 47a Fan E, Zhang Z, Minke WE, Hou Z, Verlinde CL. M. J, Hol WG. J. J. Am. Chem. Soc. 2000; 122: 2663
- 47b Zhang Z, Merritt EA, Ahn M, Roach C, Hou Z, Verlinde CL. M. J, Hol WG. J, Fan E. J. Am. Chem. Soc. 2002; 124: 12991
- 48a Sansone F, Casnati A. Chem. Soc. Rev. 2013; 42: 4623
- 48b Mattarella M, Garcia-Hartjes J, Wennekes T, Zuilhof H, Siegel JS. Org. Biomol. Chem. 2013; 11: 4333
- 49 Mattarella M, Siegel JS. Org. Biomol. Chem. 2012; 10: 5799
- 50 Al-Azemi TF, Vinodh M, Alipour FH, Mohamod AA. J. Org. Chem. 2017; 82: 10945
- 51 Guo M, Wang X, Zhan C, Demay-Drouhard P, Li W, Du K, Olson MA, Zuilhof H, Sue AC. J. Am. Chem. Soc. 2018; 140: 74
- 52 Demay-Drouhard P, Du K, Samanta K, Wan X, Yang W, Srinivasan R, Sue AC, Zuilhof H. Org. Lett. 2019; 21: 3976
- 53 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
- 54a Liu P, Li Q, Zeng H, Shi B, Liu J, Huang F. Org. Chem. Front. 2019; 6: 309
- 54b Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong JJ. Angew. Chem. Int. Ed. 2018; 57: 2605
- 55a Mortenson DE, Brighty GJ, Plate L, Bare G, Chen W, Li S, Wang H, Cravatt BF, Forli S, Powers ET, Sharpless KB, Wilson IA, Kelly JW. J. Am. Chem. Soc. 2018; 140: 200
- 55b Xu H, Gopalsamy A, Hett EC, Salter S, Aulabaugh A, Kyne RE, Pierce B, Jones LH. Org. Biomol. Chem. 2016; 14: 6179
- 56a Zhang M, Liang Y.-R, Li H, Liu M.-M, Wang Y. Bioorg. Med. Chem. 2017; 25: 6623
- 56b Hett EC, Xu H, Geoghegan KF, Gopalsamy A, Kyne RE. Jr, Menard CA, Narayanan A, Parikh MD, Liu S, Roberts L, Robinson RP, Tones MA, Jones LH. ACS Chem. Biol. 2015; 10: 1094
- 57 Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. Nat. Chem. 2017; 9: 1083
Note: SO2F2 is a toxic gas. For safer operation in the laboratory, we currently use a solid fluorosulfuryl imidazolium triflate salt as the fluorosulfuryl transfer reagent: see