Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(13): 1602-1606
DOI: 10.1055/s-0037-1611839
DOI: 10.1055/s-0037-1611839
letter
Copper-Catalyzed Carbene Insertion into the Sulfur–Sulfur Bond of RS–SCF2H/SCF3 under Mild Conditions
The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (21572258) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000).Further Information
Publication History
Received: 20 March 2019
Accepted after revision: 04 May 2019
Publication Date:
03 July 2019 (online)
Abstract
A copper-catalyzed carbene insertion into the sulfur–sulfur bond of trifluoromethyl/difluoromethyl/diphenyldisulfides under mild conditions has been developed. Diverse dithioketal derivatives were synthesized in moderate to good yields in an atom-economic process.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611839.
- Supporting Information
-
References
- 1a Leo A, Hansch C, Elkins D. Chem. Rev. 1971; 71: 525
- 1b Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
- 1c Landelle G, Panossian A, Leroux FR. Curr. Top. Med. Chem. 2014; 14: 941
- 2 Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J. Am. Chem. Soc. 2017; 139: 9325
- 3a Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
- 3b Manteau B, Pazenok S, Vors J.-P, Leroux FR. J. Fluorine Chem. 2010; 131: 140
- 3c Landelle G, Panossian A, Pazenok S, Vors J.-P, Leroux FR. Beilstein J. Org. Chem. 2013; 9: 2476
- 3d Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
- 3e Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
- 3f Chachignon H, Cahard D. Chin. J. Chem. 2016; 34: 445
- 3g Xiong H.-Y, Pannecoucke X, Besset T. Chem. Eur. J. 2016; 22: 16734
- 3h Zheng H, Huang Y, Weng Z. Tetrahedron Lett. 2016; 57: 1397
- 3i Zhang P, Lu L, Shen Q. Acta Chim. Sin. 2017; 75: 744
- 4a Ye T, McKervey MA. Chem. Rev. 1994; 94: 1091
- 4b Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
- 4c Zhu S.-F, Zhou Q.-L. Nat. Sci. Rev. 2014; 1: 580
- 4d Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
- 4e Candeias NR, Paterna R, Gois PM. P. Chem. Rev. 2016; 116: 2937
- 4f Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
- 4g Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
- 4h Wang X, Wang X, Wang J. Tetrahedron 2019; 75: 949
- 5a Hu M, Rong J, Miao W, Ni C, Han Y, Hu J. Org. Lett. 2014; 16: 2030
- 5b Wang X, Zhou Y, Ji G, Wu G, Li M, Zhang Y, Wang J. Eur. J. Org. Chem. 2014; 3093
- 5c Lefebvre Q, Fava E, Nikolaienko P, Rueping M. Chem. Commun. 2014; 50: 6617
- 5d Matheis C, Krause T, Bragoni V, Goossen LJ. Chem. Eur. J. 2016; 22: 12270
- 5e Zhang Z, Sheng Z, Yu W, Wu G, Zhang R, Chu W.-D, Zhang Y, Wang J. Nat. Chem. 2017; 9: 970
- 5f Chen T, You Y, Weng Z. J. Fluorine Chem. 2018; 216: 43
- 6a Davies HM. L, Hedley SJ. Chem. Soc. Rev. 2007; 36: 1109
- 6b Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
- 6c Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
- 7 Brookhart M, Studabaker WB. Chem. Rev. 1987; 87: 411
- 8a Aggarwal V, Winn CL. Acc. Chem. Res. 2004; 37: 611
- 8b Zhang Y, Wang J. Coord. Chem. Rev. 2010; 254: 941
- 9a Zheng Y, Bian R, Zhang X, Yao R, Qiu L, Bao X, Xu X. Eur. J. Org. Chem. 2016; 3872
- 9b Zhang H, Wang H, Yang H, Fu H. Org. Biomol. Chem. 2015; 13: 6149
- 9c Li H, Wang L, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2012; 51: 2943
- 9d Li H, Shangguan X, Zhang Z, Huang S, Zhang Y, Wang J. Org. Lett. 2014; 16: 448
- 9e Liu Z, Tan H, Fu T, Xia Y, Qiu D, Zhang Y, Wang J. J. Am. Chem. Soc. 2015; 137: 12800
- 9f Ganapathy D, Sekar G. Org. Lett. 2014; 16: 3856
- 9g Arunprasath D, Muthupandi P, Sekar G. Org. Lett. 2015; 17: 5448
- 10 Kawamura Y, Akitomo K, Oe M, Horie T, Tsukayama M. Tetrahedron Lett. 1997; 38: 8989
- 11 Hamagichi M, Misumi T, Oshima T. Tetrahedron Lett. 1998; 39: 7113
- 12 Zheng Y, Bian R, Zhang X, Yao R, Qiu L, Bao X, Xu X. Eur. J. Org. Chem. 2016; 3872
- 13 Arunprasath D, Sekar G. Adv. Synth. Catal. 2017; 359: 698
- 14 Rao C, Mai S, Song Q. Chem. Commun. 2018; 54: 5964
- 15 Yuan H, Nuligonda T, Gao H, Tung C.-H, Xu Z. Org. Chem. Front. 2018; 5: 1371
- 16a Shao X.-X, Xu C.-F, Lu L, Shen Q. Acc. Chem. Res. 2015; 48: 1227
- 16b Shao X.-X, Wang X.-Q, Yang T, Long Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457
- 16c Wang X.-Q, Tao Y. T, Xiaolin C. X, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 12860
- 16d Xu C.-F, Ma B.-Q, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 9316
- 16e Zhu D.-H, Gu Y, Lu L, Shen Q. J. Am. Chem. Soc. 2015; 137: 10547
- 16f Wu J, Gu Y, Leng X.-B, Shen Q. Angew. Chem. Int. Ed. 2015; 54: 7648
- 16g Zhu D.-H, Shao X.-X, Hong X, Lu L, Shen Q. Angew. Chem. Int. Ed. 2016; 55: 15807
- 17 General procedure for copper-catalyzed carbene insertion of disulfides (3a–e, 3g–o, 3r–z). In a flame-dried glass tube, under an argon atmosphere, a mixture of disulfide (0.3 mmol) and Cu(OTf)2 (2.7 mg, 0.0075 mmol, 2.5 mol%) was added to DCE (0.6 mL) at room temperature. Diazo compound (0.3 mmol) was then added in one portion. The mixture was stirred for 1 h and then additional diazo compound (0.3 mmol) was added. The mixture was stirred for another 1 h and subsequently filtered through a short plug of Celite and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (EtOAc/PE) to give the product. Ethyl 2-((Difluoromethyl)thio)-2-((4-fluorophenyl)thio)-2-phenylacetate (3a). Rf = 0.5 (EtOAc/PE, 1:20); yield: 76 mg (68%); yellow oil. 1H NMR (400 MHz, CDCl3, 293 K, TMS): δ = 7.33–7.20 (m, 5 H), 7.17–7.13 (m, 2 H), 6.93 (dd, J = 56.2, 54.1 Hz, 1 H), 6.89 (t, J = 8.6 Hz, 2 H), 4.35–4.23 (m, 2 H), 1.27 (t, J = 7.1 Hz, 3 H). 19F NMR (375 MHz, CDCl3): δ = –92.72 (dd, J = 252.6, 56.2 Hz, 1 F), –95.60 (dd, J = 252.7, 54.3 Hz, 1 F), –109.87 (s, 1 F). 13C NMR (100.7 MHz, CDCl3): δ = 169.4, 164.2 (d, J = 251.6 Hz), 139.6 (d, J = 8.8 Hz), 136.3, 128.8, 128.3, 127.6, 124.4 (d, J = 3.2 Hz), 122.7 (t, J = 269.9 Hz), 115.7 (d, J = 21.9 Hz), 70.6, 63.5, 13.7. IR (KBr): νmax = 2984, 1728, 1589, 1489, 1446, 1232, 1067, 1041, 864 cm–1. MS (ESI): m/z = 390.0 [M + NH4 +]. HRMS (ESI): m/z calcd for C17H19NF3O2S2 [M + NH4 +]: 390.0809; found: 390.0803. Ethyl 2-((4-Cchlorophenyl)thio)-2-((difluoromethyl)thio)-2-phenylacetate (3b). Rf = 0.5 (EtOAc/PE, 1:20); yield: 100 mg (86%); yellow oil. 1H NMR (400 MHz, CDCl3, 293 K, TMS): δ = 7.30–7.22 (m, 5 H), 7.16 (d, J = 8.4 Hz, 2 H), 7.08 (d, J = 8.6 Hz, 2 H), 6.92 (dd, J = 56.2, 54.1 Hz, 1 H), 4.34–4.22 (m, 2 H), 1.25 (t, J = 7.1 Hz, 3 H). 19F NMR (375 MHz, CDCl3): δ = 92.65 (dd, J = 252.7, 56.2 Hz, 1 F), –95.65 (dd, J = 252.7, 54.1 Hz, 1 F). 13C NMR (100.7 MHz, CDCl3): δ = 169.3, 138.6, 136.8, 136.3, 128.9, 128.8, 128.4, 127.6, 122.6 (t, J = 269.9 Hz), 70.6, 63.5, 13.7. IR (KBr): νmax = 2983, 1728, 1573, 1475, 1301, 1233, 1067, 1042, 796 cm–1. MS (ESI): m/z = 406.0 [M + NH4 +]. HRMS (ESI): m/z calcd for C17H19NF2ClO2S2 [M + NH4 +]: 406.0514; found: 406.0508. Ethyl 2-((4-Bromophenyl)thio)-2-((difluoromethyl)thio)-2-phenylacetate 3c. Rf = 0.5 (EtOAc/PE, 1:20); yield: 107 mg (82%); yellow oil. 1H NMR (400 MHz, CDCl3, 293 K, TMS): δ = 7.25 (d, J = 8.4 Hz, 2 H), 7.23–7.16 (m, 5 H), 6.95 (d, J = 8.4 Hz, 2 H), 6.85 (dd, J = 56.2, 54.1 Hz, 1 H), 4.28–4.16 (m, 2 H), 1.19 (t, J = 7.1 Hz, 3 H). 19F NMR (375 MHz, CDCl3): δ = –92.64 (dd, J = 252.7, 56.3 Hz, 1 F), –95.67 (dd, J = 252.7, 54.1 Hz, 1 F). 13C NMR (100.7 MHz, CDCl3): δ = 169.3, 138.8, 136.2, 131.7, 128.8, 128.4, 128.1, 127.5, 125.2, 122.6 (t, J = 270.1 Hz), 70.5, 65.8, 63.5. IR (KBr): νmax = 2982, 1727, 1473, 1446, 1232, 1068, 1041, 815, 769 cm–1. MS (ESI): m/z = 449.9 [M + NH4 +]. HRMS (ESI): m/z calcd for C17H19NF2BrO2S2 [M + NH4 +]: 450.0009; found: 450.0003
Selected recent reviews for trifluoromethylthiolation/difluoromethylthiolation, see:
Selected recent reviews for transformation of diazo compounds, see:
Selected examples for the use of diazo substrates in the preparation of trifluoromethylthiolated compounds:
Selected recent reviews for carbene from diazo compound insertion into C–H and X–H bonds, see:
Selected recent examples of insertion of carbenoid species into X–Y bonds (X, Y = C, N, O, Si, S, etc.), see: