Synlett 2019; 30(15): 1733-1737
DOI: 10.1055/s-0037-1611821
synpacts
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Hybridization Properties of Covalently Mercurated and Palladated Oligonucleotides

Dattatraya Ukale
,
Sajal Maity
,
Madhuri Hande
,
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721613 and from the Academy of Finland (decisions No. 286478 and 294008).
Further Information

Publication History

Received: 07 March 2019

Accepted after revision: 16 April 2019

Publication Date:
08 May 2019 (online)


Abstract

Covalent metalation of the base moieties affords a new class of modified oligonucleotides. These organometallic oligonucleotides share many properties, notably increased hybridization affinity conferred by metal-mediated base pairing, with oligonucleotides incorporating coordinative transition-metal complexes. They are, however, set apart by their ability to retain the transition-metal ion even at extreme dilution. Such stability towards dissociation would be desirable in DNA nanotechnology and necessary in therapeutic applications. Herein we describe our efforts towards preparation and characterization of covalently mercurated and palladated oligonucleotides, highlighting in particular our recent contribution on the synthesis and potential applications of oligonucleotides incorporating dimercurated artificial nucleobases.

1 Introduction

2 Synthesis of Covalently Mercurated and Palladated Oligonucleotides

3 Hybridization Properties of Covalently Mercurated and Palladated Oligonucleotides

4 Outlook

 
  • References

  • 1 Martin RB. Acc. Chem. Res. 1985; 18: 32
  • 2 Rosenberg B, Van Camp L, Krigas T. Nature 1965; 205: 698
    • 3a Kelland L. Nat. Rev. Cancer 2007; 7: 573
    • 3b Hu X, Li FY, Noor N, Ling DS. Sci. Bull. 2017; 62: 589
    • 3c Dilruba S, Kalayda GV. Cancer Chemother. Pharmacol. 2016; 77: 1103
    • 3d Trudu F, Amato F, Vanhara P, Pivetta T, Pena-Mendez EM, Havel J. J. Appl. Biomed. 2015; 13: 79
    • 3e Brabec V, Hrabina O, Kasparkova J. Coord. Chem. Rev. 2017; 351: 2
    • 3f Deo KM, Ang DL, McGhie B, Rajamanickam A, Dhiman A, Khoury A, Holland J, Bjelosevic A, Pages B, Gordon C, Aldrich-Wright JR. Coord. Chem. Rev. 2018; 375: 148
  • 4 Katz S. Biochim. Biophys. Acta Spec. Sect. Nucleic Acids Relat. Subj. 1963; 68: 240
  • 5 Meggers E, Holland PL, Tolman WB, Romesberg FE, Schultz PG. J. Am. Chem. Soc. 2000; 122: 10714
    • 6a Jash B, Müller J. Chem. Eur. J. 2017; 23: 17166
    • 6b Scharf P, Müller J. ChemPlusChem 2013; 78: 20
    • 6c Takezawa Y, Shionoya M. Acc. Chem. Res. 2012; 45: 2066
    • 6d Clever GH, Shionoya M. Coord. Chem. Rev. 2010; 254: 2391
    • 6e Mandal S, Müller J. Curr. Opin. Chem. Biol. 2017; 37: 71
    • 6f Takezawa Y, Müller J, Shionoya M. Chem. Lett. 2016; 46: 622
    • 6g Taherpour S, Golubev O, Lönnberg T. Inorg. Chim. Acta 2016; 452: 43
  • 7 Dale RM. K, Livingston DC, Ward DC. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 2238
  • 8 Dale RM. K, Martin E, Livingston DC, Ward DC. Biochemistry 1975; 14: 2447
    • 9a Collado A, Gómez-Gallego M, Sierra MA. Eur. J. Org. Chem. 2018; 1617
    • 9b Sinha I, Hepp A, Schirmer B, Kösters J, Neugebauer J, Müller J. Inorg. Chem. 2015; 54: 4183
    • 9c Chamala RR, Parrish D, Pradhan P, Lakshman MK. J. Org. Chem. 2013; 78: 7423
    • 9d Martín-Ortíz M, Gómez-Gallego M, Ramírez de Arellano C, Sierra MA. Chem. Eur. J. 2012; 18: 12603
  • 10 Ukale D, Shinde VS, Lönnberg T. Chem. Eur. J. 2016; 22: 7917
  • 11 Ukale DU, Lönnberg T. ChemBioChem 2018; 19: 1096
  • 12 Ukale DU, Lönnberg T. Angew. Chem. Int. Ed. 2018; 57: 16171
    • 13a Craig CA, Watts RJ. Inorg. Chem. 1989; 28: 309
    • 13b Ghedini M, Pucci D, De Munno G, Viterbo D, Neve F, Armentano S. Chem. Mater. 1991; 3: 65
    • 13c Gutierrez MA, Newkome GR, Selbin J. J. Organomet. Chem. 1980; 202: 341
    • 13d Cope AC, Friedrich EC. J. Am. Chem. Soc. 1968; 90: 909
    • 13e Kasahara A, Izumi T. Bull. Chem. Soc. Jpn. 1969; 42: 1765
    • 13f Longoni G, Fantucci P, Chini P, Canziani F. J. Organomet. Chem. 1972; 39: 413
  • 14 Maity SK, Lönnberg T. Chem. Eur. J. 2018; 24: 1274
  • 15 Hande M, Maity S, Lönnberg T. Int. J. Mol. Sci. 2018; 19: 6
  • 16 Räisälä H, Lönnberg T. Chem. Eur. J. 2019; 25: 4751
    • 17a Šebera J, Burda J, Straka M, Ono A, Kojima C, Tanaka Y, Sychrovský V. Chem. Eur. J. 2013; 19: 9884
    • 17b Yamaguchi H, Šebera J, Kondo J, Oda S, Komuro T, Kawamura T, Dairaku T, Kondo Y, Okamoto I, Ono A, Burda JV, Kojima C, Sychrovský V, Tanaka Y. Nucleic Acids Res. 2014; 42: 4094
  • 18 Schwarzenbach G, Schellenberg M. Helv. Chim. Acta 1965; 48: 28
    • 19a Mitton-Fry RM, DeGregorio SJ, Wang J, Steitz TA, Steitz JA. Science 2010; 330: 1244
    • 19b Conrad NK. Virus Res. 2016; 212: 53
    • 19c Conrad NK, Mili S, Marshall EL, Shu M.-D, Steitz JA. Mol. Cell 2006; 24: 943