Subscribe to RSS
DOI: 10.1055/s-0037-1611699
New Strategies for Activation of Phosphonates/Phosphates to Forge Functional Phosphorus Compounds
This work was supported by University of Nevada Las Vegas.Publication History
Received: 08.11.2018
Accepted after revision: 06 December 2018
Publication Date:
08 January 2019 (online)
Abstract
Organophosphonate analogues are important structural motifs that are present in bioactive natural products, pharmaceuticals, and agrochemicals. Because they are useful in a broad range of applications, much effort has focused on developing efficient synthetic methods that enable access to organophosphonates and their derivatives. However, currently available synthetic procedures rely on harsh reaction conditions and are limited to a narrow substrate scope. Our lab has recently made important advances in leveraging inert phosphonates/phosphates into functional phosphorus compounds such as mixed phosphonates, phosphates, and mixed aryl phosphate derivatives. Presented herein is an overview of recent achievements in the synthesis of phosphonate/phosphate derivatives and a summary of our recent accomplishments in Tf2O-promoted activating strategy of phosphonate analogues.
1 Introduction
2 Direct Activating Strategy of Phosphonate Analogues
3 Late-stage Phosphonylation of Natural Compounds
4 Potential Applications
5 Summary
-
References
- 1 Corbridge DE. C. Phosphorus. An Outline of Its Chemistry, Biochemistry, and Technology. 4th Ed. Elsevier; New York: 1990
- 2a Toy AD. F. Phosphorus Chemistry in Everyday Living. American Chemical Society; Washington, DC: 1976
- 2b Gefter YL. Organophosphorus Monomers and Polymers. Pergamon Press; New York: 1962
- 2c Horsman GP, Zechel DL. Chem. Rev. 2017; 117: 5704
- 2d Chen L, Wu D, Yoon J. ACS Sens. 2018; 3: 27
- 2e Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Chem. Rev. 2015; 115: PR1
- 3a Kozak W, Rachon J, Daśko M, Demkowicz S. Asian J. Org. Chem. 2018; 7: 314
- 3b Schultz C. Bioorg. Med. Chem. 2003; 11: 885
- 3c Chen X, Kopecky DJ, Mihalic J, Jeffries S, Min X, Heath J, Deignan J, Lai S, Fu Z, Guimaraes C, Shen S, Li S, Johnstone S, Thibault S, Xu H, Cardozo M, Shen W, Walker N, Kayser F, Wang Z. J. Med. Chem. 2012; 55: 3837
- 3d Korhonen HJ, Conway LP, Hodgson DR. W. Curr. Opin. Chem. Biol. 2014; 21: 63
- 3e Han ZS, Goyal N, Herbage MA, Sieber JD, Qu B, Xu Y, Li Z, Reeves JT, Desrosiers J.-N, Ma S, Grinberg N, Lee H, Mangunuru HP. R, Zhang Y, Krishnamurthy D, Lu BZ, Song JJ, Wang G, Senanayake CH. J. Am. Chem. Soc. 2013; 135: 2474
- 3f Chan LY, Cheong L, Kim S. Org. Lett. 2013; 15: 2186
- 3g Fiorito D, Folliet S, Liu Y, Mazet C. ACS Catal. 2018; 8: 1392
- 3h Zhao D, Nimphius C, Lindale M, Glorius F. Org. Lett. 2013; 15: 4504
- 3i Protti S, Fagnoni M. Chem. Commun. 2008; 3611
- 3j McLaughlin M. Org. Lett. 2005; 7: 4875
- 4a Pradere U, Garnier-Amblard EC, Coats SJ, Amblard F, Schinazi RF. Chem. Rev. 2014; 114: 9154
- 4b Thornton PJ, Kadri H, Miccoli A, Mehellou Y. J. Med. Chem. 2016; 59: 10400
- 4c Okon A, Han J, Dawadi S, Demosthenous C, Aldrich CC, Gupta M, Wagner CR. J. Med. Chem. 2017; 60: 8131
- 5 Kazuo H, Katsuki H, Mitsuo H, Masaru N, Kenji T, Masaaki Y. Jpn. Kokai Tokkyo Koho JP 48018461 B 19730606
- 6 Tramontano A, Ivanov B, Gololobov G, Paul S. Appl. Biochem. Biotechnol. 2000; 83: 233
- 7a Panmand DS, Tiwari AD, Panda SS, Monbaliu J.-CM, Beagle LK, Asiri AM, Stevens CV, Steel PJ, Hall CD, Katritzky AR. Tetrahedron Lett. 2014; 55: 5898
- 7b Jones S, Selitsianos D. Org. Lett. 2002; 4: 3671
- 7c Jones S, Selitsianos D, Thompson KJ, Toms SM. J. Org. Chem. 2003; 68: 5211
- 7d Jones S, Smanmoo C. Org. Lett. 2005; 7: 3271
- 7e Jones S, Smanmoo C. Tetrahedron Lett. 2004; 45: 1585
- 7f Liu CY, Pawar VD, Kao JQ, Chen CT. Adv. Synth. Catal. 2009; 352: 188
- 7g Guzmán A, Diaz E. Synth. Commun. 1997; 27: 3035
- 8a Atherton FR, Todd AR. J. Chem. Soc. 1947; 674
- 8b Dhineshkumar J, Prabhu KR. Org. Lett. 2013; 15: 6062
- 8c Wang G, Shen R, Xu Q, Goto M, Zhao Y, Han L.-B. J. Org. Chem. 2010; 75: 3890
- 9a Xiong B, Feng X, Zhu L, Chen T, Zhou Y, Au C.-T, Yin S.-F. ACS Catal. 2015; 5: 537
- 9b Keglevich G, Kiss NZ, Mucsi Z, Kortvelyesi T. Org. Biomol. Chem. 2012; 10: 2011
- 9c Xiong B, Zeng K, Zhang S, Zhou Y, Au C.-T, Yin S.-F. Tetrahedron 2015; 71: 9293
- 9d Zeng K, Chen L, Xiong B, Zhou Y, Au C.-T, Yin S.-F. Tetrahedron Lett. 2016; 57: 2222
- 9e Tatsuta T, Hosono M, Rotinsulu H, Wewengkang DS, Sumilat DA, Namikoshi M, Yamazaki H. J. Nat. Prod. 2017; 80: 499
- 10a Huang H, Denne J, Yang C.-H, Wang H, Kang JunY. Angew. Chem. Int. Ed. 2018; 57: 6624
- 10b Huang H, Ash J, Kang JY. Org. Lett. 2018; 20: 4938
- 11 Kaboudin B, Mostafalu R. Phosphorus, Sulfur Silicon Relat. Elem. 2012; 187: 776
- 12 Fañanás-Mastral M, Feringa BL. J. Am. Chem. Soc. 2014; 136: 9894
- 13 Nielsen J, Caruthers MH. J. Am. Chem. Soc. 1988; 110: 6275
- 14 Huang H, Denne J, Yang C.-H, Wang H, Kang JY. Angew. Chem. 2018; 130: 6734
- 15a Bera M, Sahoo SK, Maiti D. ACS Catal. 2016; 6: 3575
- 15b Bag S, Jayarajan R, Dutta U, Chowdhury R, Mondal R, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 12538
- 15c Foust BJ, Poe MM, Lentini NA, Hsiao C.-HC, Wiemer AJ, Wiemer DF. ACS Med. Chem. Lett. 2017; 8: 914
- 15d Reetz MT, Rüggeberg CJ, Dröge MJ, Quax WJ. Tetrahedron 2002; 58: 8465
- 16a Hendsbee AD, Giffin NA, Zhang Y, Pye CC, Masuda JD. Angew. Chem. Int. Ed. 2012; 51: 10836
- 16b Huynh K, Rivard E, Lough AJ, Manners I. Inorg. Chem. 2007; 46: 9979
- 16c Cui J, Li Y, Ganguly R, Kinjo R. Inorg. Chim. Acta 2017; 460: 2
- 17a Li S.-Z, Ahmar M, Queneau Y, Soulère L. Tetrahedron Lett. 2015; 56: 4694
- 17b Ladame S, Claustre S, Willson M. Phosphorus, Sulfur Silicon Relat. Elem. 2001; 174: 37
- 17c Weiss R, Bess M, Huber SM, Heinemann FW. J. Am. Chem. Soc. 2008; 130: 4610
- 17d Fujioka H, Okitsu T, Sawama Y, Murata N, Li R, Kita Y. J. Am. Chem. Soc. 2006; 128: 5930
- 17e Quesnel JS, Fabrikant A, Arndtsen BA. Chem. Sci. 2016; 7: 295