Synthesis 2019; 51(14): 2792-2808
DOI: 10.1055/s-0037-1611549
short review
© Georg Thieme Verlag Stuttgart · New York

Weinreb Amides as Privileged Acylating Agents for Accessing α-Substituted Ketones

Raffaele Senatore
,
Laura Ielo
,
Serena Monticelli
,
Laura Castoldi
,
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria   Email: vittorio.pace@univie.ac.at
› Author Affiliations
The authors thank Universität Wien (University of Vienna) for generous support.
Further Information

Publication History

Received: 18 March 2019

Accepted after revision: 17 April 2019

Publication Date:
22 May 2019 (online)


Published as part of the Bürgenstock Special Section 2018 Future Stars in Organic Chemistry

Abstract

The acylation of α-substituted carbanion-type reagents (MCR1R2X; X = halogen, OR, SR, NR3R4, SeR, etc.) with Weinreb amides constitutes a highly versatile and flexible approach for accessing α-functionalized ketones. In this short review we will present a series of transformations—from our own and the work of others—documenting the general applicability of the methodology. Chemoselectivity is uniformly manifested including for critical substrates featuring additional electrophilic functionalities or sterically demanding elements. Importantly, the stereochemical information contained in the Weinreb amides can be fully transferred to the targeted ketones without affecting the optical purity. The protocol is also applicable to chiral carbanions generated through sparteine-mediated asymmetric deprotonation: the careful design of the experimental procedure allows recycling of the sparteine and the Weinreb ‘amine’ (N,O-dimethylhydroxylamine), thus improving the sustainability perspective of the processes.

1 Introduction

1.1 The Problem of the Synthesis of α-Substituted Ketones

1.2 Weinreb Amides: General Features and Preparation

2 Synthesis of α-Substituted Ketones

2.1 α-Haloketones

2.2 Synthesis of α-Cyanoketones

2.3 Synthesis of α-Oxyketones

2.4 Synthesis of β-Oxo Thioethers (α-Thioketones)

2.5 Synthesis of Chiral α-Oxy and α-Nitrogen Ketones via the Sparteine-Mediated Generation of Optically Active Organolithiums

2.6 Synthesis of α-Selenomethyl Ketones

2.7 Reactivity of α-Phosphorus Carbanions with Weinreb Amides

2.8 Modification of the Weinreb Amide Core: The CLAmP Reagent

3 Competing Attack of Nucleophiles at More Reactive Electrophilic Sites than Weinreb Amides

4 Conclusions

 
  • References

  • 1 Otera J. Modern Carbonyl Chemistry . Wiley-VCH; Weinheim: 2000
  • 2 De Kimpe N, Verhé R. In The Chemistry of α-Haloketones, α-Haloaldehydes and α-Haloimines . Patai S. John Wiley & Sons; Chichester: 1988
    • 3a Reeder MR, Anderson RM. Chem. Rev. 2006; 106: 2828
    • 3b Stadler M, Monticelli S, Seidel T, Luger D, Salzer I, Boehm S, Holzer W, Schwarzer C, Urban E, Khom S, Langer T, Pace V, Hering S. J. Med. Chem. 2019; 62: 317
    • 3c Poessl TM, Kosjek B, Ellmer U, Gruber CC, Edegger K, Faber K, Hildebrandt P, Bornscheuer UT, Kroutil W. Adv. Synth. Catal. 2005; 347: 1827
    • 3d Fan L, Adams AM, Polisar JG, Ganem B. J. Org. Chem. 2008; 73: 9720
    • 3e Pinho VD, Gutmann B, Miranda LS. M, de Souza RO. M. A, Kappe CO. J. Org. Chem. 2014; 79: 1555
    • 3f Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 4a Erian A, Sherif S, Gaber H. Molecules 2003; 8: 793
    • 4b Suffert J. α-Heterosubstituted Ketones. In Science of Synthesis, Compounds with Two Carbon-Heteroatom Bonds: Ketones, Vol. 26. Cossy J. Georg Thieme Verlag; Stuttgart: 2005: 877
    • 5a Pace V, Cortés-Cabrera Á, Fernández M, Sinisterra JV, Alcántara AR. Synthesis 2010; 3545
    • 5b Pace V, Holzer W. Tetrahedron Lett. 2012; 53: 5106
    • 5c Pace V, Martínez F, Fernández M, Nova CI, Sinisterra JV, Alcántara AR. Tetrahedron Lett. 2009; 50: 3050
    • 6a Pace V, Martínez F, Fernández M, Sinisterra JV, Alcántara AR. Adv. Synth. Cat. 2009; 351: 3199
    • 6b Pace V, Castoldi L, Hernáiz MJ, Alcántara AR, Holzer W. Tetrahedron Lett. 2013; 54: 4369
    • 6c VanBrunt MP, Ambenge RO, Weinreb SM. J. Org. Chem. 2003; 68: 3323
    • 7a Pace V, Castoldi L, Monticelli S, Rui M, Collina S. Synlett 2017; 28: 879
    • 7b Pace V, Holzer W, De Kimpe N. Chem. Rec. 2016; 16: 2061
    • 7c Castoldi L, Monticelli S, Senatore R, Ielo L, Pace V. Chem. Commun. 2018; 54: 6692
    • 7d Amani J, Sodagar E, Molander GA. Org. Lett. 2016; 18: 732
    • 7e Wang D, Schwinden MD, Radesca L, Patel B, Kronenthal D, Huang M.-H, Nugent WA. J. Org. Chem. 2004; 69: 1629
    • 8a Capriati V. In Contemporary Carbene Chemistry . Moss RA, Doyle MP. John Wiley & Sons; Hoboken: 2013
    • 8b Pace V, Castoldi L, Mazzeo E, Rui M, Langer T, Holzer W. Angew. Chem. Int. Ed. 2017; 56: 12677
  • 9 Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
  • 10 Smith MB, March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th ed. Wiley-VCH; Weinheim: 2001
    • 11a Afagh NA, Yudin AK. Angew. Chem. Int. Ed. 2010; 49: 262
    • 11b Shenvi RA, O’Malley DP, Baran PS. Acc. Chem. Res. 2009; 42: 530
    • 11c Gaich T, Baran PS. J. Org. Chem. 2010; 75: 4657
    • 12a Pace V, Holzer W, Olofsson B. Adv. Synth. Catal. 2014; 356: 3697
    • 12b Pace V, Holzer W. Aust. J. Chem. 2013; 66: 507
    • 12c Seebach D. Angew. Chem. Int. Ed. 2011; 50: 96
    • 12d Sato T, Yoritate M, Tajima H, Chida N. Org. Biomol. Chem. 2018; 16: 3864
    • 12e Szostak M, Aubé J. J. Am. Chem. Soc. 2009; 131: 13246
    • 12f Szostak M, Yao L, Aubé J. J. Am. Chem. Soc. 2010; 132: 2078
  • 13 Bouveault L. Bull. Chem. Soc. Fr. 1904; 31: 1306
    • 15a Bechara WS, Pelletier G, Charette AB. Nat. Chem. 2012; 4: 228
    • 15b Kaiser D, Maulide N. J. Org. Chem. 2016; 81: 4421
    • 15c Xiao K.-J, Luo J.-M, Ye K.-Y, Wang Y, Huang P.-Q. Angew. Chem. 2010; 122: 3101
    • 15d Xiao K.-J, Wang A.-E, Huang P.-Q. Angew. Chem. 2012; 124: 8439
    • 15e Deng H.-Q, Qian X.-Y, Li Y.-X, Zheng J.-F, Xie L, Huang P.-Q. Org. Chem. Front. 2014; 1: 258
    • 15f Chen H, Ye J.-L, Huang P.-Q. Org. Chem. Front. 2018; 5: 943
    • 15g Kaiser D, Bauer A, Lemmerer M, Maulide N. Chem. Soc. Rev. 2018; 47: 7899
    • 16a Meng G, Szostak M. Org. Lett. 2015; 17: 4364
    • 16b Shi S, Szostak M. Chem. Eur. J. 2016; 22: 10420
    • 16c Lei P, Meng G, Szostak M. ACS Catal. 2017; 7: 1960
    • 16d Meng G, Szostak R, Szostak M. Org. Lett. 2017; 19: 3596
    • 16e Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
    • 16f Hie L, Fine Nathel NF, Shah TK, Baker EL, Hong X, Yang Y.-F, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
    • 16g Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
    • 16h Simmons BJ, Weires NA, Dander JE, Garg NK. ACS Catal. 2016; 6: 3176
    • 16i Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
  • 17 Murai T, Mutoh Y. Chem. Lett. 2012; 41: 2
  • 19 Williams JM, Jobson RB, Yasuda N, Marchesini G, Dolling U.-H, Grabowski EJ. J. Tetrahedron Lett. 1995; 36: 5461
  • 20 Pace V, Castoldi L, Alcantara AR, Holzer W. RSC Adv. 2013; 3: 10158
    • 21a Pace V, Holzer W, Verniest G, Alcántara AR, De Kimpe N. Adv. Synth. Catal. 2013; 355: 919
    • 21b Zacuto MJ, Dunn RF, Figus M. J. Org. Chem. 2014; 79: 8917
  • 22 Monticelli S, Holzer W, Langer T, Roller A, Olofsson B, Pace V. ChemSusChem 2019; 12: 1147
  • 23 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 24a Izawa K, Onishi T. Chem. Rev. 2006; 106: 2811
    • 24b Pace V, Castoldi L, Pregnolato M. Mini-Rev. Med. Chem. 2013; 13: 988
    • 25a Archibald TG. Chim. Oggi 2000; 18: 34
    • 25b Proctor LD, Warr AJ. Org. Process Res. Dev. 2002; 6: 884
    • 25c Pace V, Verniest G, Sinisterra JV, Alcántara AR, De Kimpe N. J. Org. Chem. 2010; 75: 5760
    • 25d Castoldi L, Ielo L, Holzer W, Giester G, Roller A, Pace V. J. Org. Chem. 2018; 83: 4336
  • 26 Barluenga J, Baragaña B, Concellón JM. J. Org. Chem. 1995; 60: 6696
    • 27a Onishi T, Hirose N, Nakano T, Nakazawa M, Izawa K. Tetrahedron Lett. 2001; 42: 5883
    • 27b Onishi T, Nakano T, Hirose N, Nakazawa M, Izawa K. Tetrahedron Lett. 2001; 42: 5887
    • 27c Honda Y, Katayama S, Kojima M, Suzuki T, Kishibata N, Izawa K. Org. Biomol. Chem. 2004; 2: 2061
  • 28 Castoldi L, Ielo L, Hoyos P, Hernáiz MJ, De Luca L, Alcántara AR, Holzer W, Pace V. Tetrahedron 2018; 74: 2211
  • 29 Pace V, Castoldi L, Holzer W. J. Org. Chem. 2013; 78: 7764
  • 30 Castoldi L, Holzer W, Langer T, Pace V. Chem. Commun. 2017; 53: 9498
    • 31a Giannerini M, Fañanás-Mastral M, Feringa BL. Nat. Chem. 2013; 5: 667
    • 31b For a highlight, see: Pace V, Luisi R. ChemCatChem 2014; 6: 1516
  • 32 Evans DA, Borg G, Scheidt KA. Angew. Chem. Int. Ed. 2002; 41: 3188
  • 33 Parisi G, Colella M, Monticelli S, Romanazzi G, Holzer W, Langer T, Degennaro L, Pace V, Luisi R. J. Am. Chem. Soc. 2017; 139: 13648

    • For a highlight on fluoroiodomethane, see:
    • 34a Monticelli S, Pace V. Aust. J. Chem. 2018; 71: 473
    • 34b For additional uses in carbenoid chemistry, see: Monticelli S, Colella M, Pillari V, Tota A, Langer T, Holzer W, Degennaro L, Luisi R, Pace V. Org. Lett. 2019; 21: 584
  • 35 Rudzinski DM, Kelly CB, Leadbeater NE. Chem. Commun. 2012; 48: 9610
  • 36 Phetcharawetch J, Betterley NM, Soorukram D, Pohmakotr M, Reutrakul V, Kuhakarn C. Eur. J. Org. Chem. 2017; 6840
  • 37 Angeloastro MR, Burkhart JP, Bey P, Peet NP. Tetrahedron Lett. 1992; 33: 3265
    • 38a Kokotos G, Hsu Y.-H, Burke JE, Baskakis C, Kokotos CG, Magrioti V, Dennis EA. J. Med. Chem. 2010; 53: 3602
    • 38b Kokotos CG, Baskakis C, Kokotos G. J. Org. Chem. 2008; 73: 8623
    • 39a Arseniyadis S, Kyler KS, Watt DS. Org. React. 1984; 31: 1
    • 39b Fleming FF, Zhang Z, Knochel P. Org. Lett. 2004; 6: 501
    • 39c Fleming FF, Zhang Z, Wei G, Steward OW. J. Org. Chem. 2006; 71: 1430
  • 40 Mamuye AD, Castoldi L, Azzena U, Holzer W, Pace V. Org. Biomol. Chem. 2015; 13: 1969
  • 41 Guijarro A, Yus M. Tetrahedron Lett. 1993; 34: 3487
  • 42 Pace V, Murgia I, Westermayer S, Langer T, Holzer W. Chem. Commun. 2016; 52: 7584
  • 43 Toda N, Ori M, Takami K, Tago K, Kogen H. Org. Lett. 2003; 5: 269
  • 44 Senatore R, Ielo L, Urban E, Holzer W, Pace V. Eur. J. Org. Chem. 2018; 2466
  • 45 Corey EJ, Seebach D. J. Org. Chem. 1966; 31: 4097
  • 46 Parisi G, Degennaro L, Carlucci C, de Candia M, Mastrorilli P, Roller A, Holzer W, Altomare CD, Pace V, Luisi R. Org. Biomol. Chem. 2017; 15: 5000
    • 47a Pace V, Hoyos P, Castoldi L, Domínguez de María P, Alcántara AR. ChemSusChem 2012; 5: 1369
    • 47b Monticelli S, Castoldi L, Murgia I, Senatore R, Mazzeo E, Wackerlig J, Urban E, Langer T, Pace V. Monatsh. Chem. 2017; 148: 37
    • 48a Hoppe D, Hintze F, Tebben P. Angew. Chem. Int. Ed. 1990; 29: 1422
    • 48b Beak P, Kerrick ST, Wu S, Chu J. J. Am. Chem. Soc. 1994; 116: 3231
  • 49 Carstens A, Hoppe D. Tetrahedron 1994; 50: 6097
  • 50 Azzena U, Carraro M, Pisano L, Monticelli S, Bartolotta R, Pace V. ChemSusChem 2019; 12: 40
    • 51a Pace V, Castoldi L, Monticelli S, Safranek S, Roller A, Langer T, Holzer W. Chem. Eur. J. 2015; 21: 18966
    • 51b Pace V, Monticelli S, de la Vega-Hernández K, Castoldi L. Org. Biomol. Chem. 2016; 14: 7848
    • 51c Varela A, Garve LK. B, Leonori D, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 2127
  • 52 Ritter SK. Chem. Eng. News 2017; 95: 18
  • 53 Burns M, Essafi S, Bame JR, Bull SP, Webster MP, Balieu S, Dale JW, Butts CP, Harvey JN, Aggarwal VK. Nature 2014; 513: 183
  • 54 Back TG, Kerr RG. Tetrahedron Lett. 1982; 23: 3241
    • 55a Pace V, Pelosi A, Antermite D, Rosati O, Curini M, Holzer W. Chem. Commun. 2016; 52: 2639

    • Our group recently succeeded in performing the homologation of other heteroatoms such as tin or germanium, see:
    • 55b Touqueer S, Castoldi L, Langer T, Holzer W, Pace V. Chem. Commun. 2018; 54: 10112
  • 56 Senatore R, Castoldi L, Ielo L, Holzer W, Pace V. Org. Lett. 2018; 20: 2685
    • 57a Ghosh AK, Wang Y, Kim JT. J. Org. Chem. 2001; 66: 8973
    • 57b Crimmins MT, Stanton MG, Allwein SP. J. Am. Chem. Soc. 2002; 124: 5958
  • 58 Theisen PD, Heathcock CH. J. Org. Chem. 1988; 53: 2374
  • 59 Murphy JA, Commeureuc AG. J, Snaddon TN, McGuire TM, Khan TA, Hisler K, Dewis ML, Carling R. Org. Lett. 2005; 7: 1427
  • 60 Heller ST, Newton JN, Fu T, Sarpong R. Angew. Chem. Int. Ed. 2015; 54: 9839
    • 61a Pace V, Castoldi L, Mamuye AD, Langer T, Holzer W. Adv. Synth. Catal. 2016; 358: 172
    • 61b Monticelli S, Castoldi L, Touqeer S, Miele M, Urban E, Pace V. Chem. Heterocycl. Compd. 2018; 54: 389
  • 62 Ielo L, Touqeer S, Roller A, Langer T, Holzer W, Pace V. Angew. Chem. Int. Ed. 2019; 58: 2479