Synthesis 2019; 51(17): 3327-3335
DOI: 10.1055/s-0037-1611547
paper
© Georg Thieme Verlag Stuttgart · New York

The Catalytic Asymmetric Construction of Trifluoromethylated Quaternary Carbon-Containing Thiochromans

Hui Chen
,
Cui Wang
,
Dongwa Wen
,
Yabo Deng
,
Xin Liu
,
Xueting Liu
,
Jiang Zhang*
,
Wenjin Yan*
The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. of China   Email: zhangjian@lzu.edu.cn   Email: yanwj@lzu.edu.cn
› Author Affiliations
We are grateful for the grant from the National Natural Science Foundation of China (No. 81872723).
Further Information

Publication History

Received: 27 March 2019

Accepted after revision: 24 April 2019

Publication Date:
15 May 2019 (online)


Abstract

Trifluoromethylated chiral quaternary stereogenic carbon center at 2-position of thiochromans has been constructed through organocatalyzed Michael-aldol reaction. With quinine squaramide as catalyst, the reaction of 2-mercaptobenzaldehyde with β-aryl-β-CF3 enones or β-alkyl-β-CF3 enones gave 2-CF3-thiochromans bearing three contiguous stereogenic centers in good to excellent diastereoselectivities, enantioselectivities, and yields.

Supporting Information

 
  • References

  • 1 Ricci G, Santoro L, Achilli M, Matarese RM, Nardini M, Cavallini D. J. Biol. Chem. 1983; 258: 10511
  • 2 Yu S, Sugahara K, Zhang J, Ageta T, Kodama H, Fontana M, Duprè S. J. Chromatogr., B. 1997; 698: 301
  • 3 Hu L, Zhu H, Du D.-M, Xu J. J. Org. Chem. 2007; 72: 4543
  • 4 Poulin MB, Du Q, Schramm VL. J. Org. Chem. 2015; 80: 5344
  • 5 Bhawal SS, Patil RA, Armstrong DW. RSC Adv. 2015; 5: 95854
  • 6 Wang P, He J.-Y, Yin J.-F. Bioprocess Biosyst. Eng. 2015; 38: 421
  • 7 Sulphur-Containing Drugs and Related Organic Compounds . Damani LA. Wiley-Interscience; New York: 1989
  • 8 Kondo T, Mitsudo TA. Chem. Rev. 2000; 100: 3205
  • 9 Postigo A. RSC Adv. 2011; 1: 14
  • 10 Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
  • 11 Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
  • 12 Bosset C, Lefebvre G, Angibaud P, Stansfield I, Meerpoel L, Berthelot D, Guérinot A, Cossy J. J. Org. Chem. 2017;  82: 4020
  • 13 Burch JD, Barrett K, Chen Y, De Voss J, Eigenbrot C, Goldsmith R, Ismaili MH. A, Lau K, Lin Z, Ortwine DF, Zarrin AA, McEwan PA, Barker JJ, Ellebrandt C, Kordt D, Stein DB, Wang X, Chen Y, Hu B, Xu X, Yuen P.-W, Zhang Y, Pei Z. J. Med. Chem. 2015; 58: 3806
  • 14 Brown MJ, Carter PS, Fenwick AE, Fosberry AP, Hamprecht DW, Hibbs MJ, Jarvest RL, Mensah L, Milner PH, O’Hanlon PJ, Pope AJ, Richardson CM, West A, Witty DR. Bioorg. Med. Chem. Lett. 2002; 12: 3171
  • 15 van Vliet LA, Rodenhuis N, Dijkstra D, Wikström H. J. Med. Chem. 2000; 43: 2871
  • 16 Kanbe Y, Kim M.-H, Nishimoto M, Ohtake Y, Tsunenari T, Taniguchi K, Ohizumi I, Kaiho S.-i, Nabuchi Y, Kawata S, Morikawa K, Jo J.-C, Kwon H.-A, Limb H.-S, Kim H.-Y. Bioorg. Med. Chem. Lett. 2006; 16: 4090
  • 17 He X.-H, Ji Y.-L, Peng C, Han B. Adv. Synth. Catal. 2019; 361: 1923
  • 18 Kawai H, Shibata N. Chem. Rec. 2014; 14: 1024
  • 19 Huang Y.-Y, Yang X, Chen Z, Verpoort F, Shibata N. Chem. Eur. J. 2015; 21: 8664
  • 20 Meyer F. Chem. Commun. 2016; 52: 3077
  • 21 Matoba K, Kawai H, Furukawa T, Kusuda A, Tokunaga E, Nakamura S, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2010; 49: 5762
  • 22 Li Q.-H, Tong M.-C, Li J, Tao H.-Y, Wang C.-J. Chem. Commun. 2011; 47: 11110
  • 23 Kawai H, Okusu S, Tokunaga E, Sato H, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2012; 51: 4959
  • 24 Kawai H, Kitayama T, Tokunaga E, Matsumoto T, Sato H, Shiro M, Shibata N. Chem. Commun 2012; 48: 4067
  • 25 Kawai H, Sugita Y, Tokunaga E, Sato H, Shiro M, Shibata N. Chem. Commun. 2012; 48: 3632
  • 26 Li Q.-H, Xue Z.-Y, Tao H.-Y, Wang C.-J. Tetrahedron Lett. 2012; 53: 3650
  • 27 Huang G, Yin Z, Zhang X. Chem. Eur. J. 2013; 19: 11992
  • 28 Kawai H, Okusu S, Yuan Z, Tokunaga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2013; 52: 2221
  • 29 Kawai H, Yuan Z, Kitayama T, Tokunaga E, Shibata N. Angew. Chem. Int. Ed. 2013; 52: 5575
  • 30 Su Y, Ling J.-B, Zhang S, Xu P.-F. J. Org. Chem. 2013; 78: 11053
  • 31 Corbett MT, Xu Q, Johnson JS. Org. Lett. 2014; 16: 2362
  • 32 Zhang Z.-M, Xu B, Xu S, Wu H.-H, Zhang J. Angew. Chem. Int. Ed. 2016; 55: 6324
  • 33 Ponce A, Alonso I, Adrio J, Carretero JC. Chem. Eur. J. 2016; 22: 4952
  • 34 Xu B, Zhang Z.-M, Xu S, Liu B, Xiao Y, Zhang J. ACS Catal. 2017; 7: 210
  • 35 Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
  • 36 Zheng Y, Ma J.-A. Adv. Synth. Catal. 2010; 352: 2745
  • 37 Zhu W, Wang J, Wang S, Gu Z, Aceña JL, Izawa K, Liu H, Soloshonok VA. J. Fluorine Chem. 2014; 167: 37
  • 38 Wang J, Sánchez-Roselló M, Aceña J, Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
  • 39 Ali A, Ahmad VU, Liebscher J. Eur. J. Org. Chem. 2001; 529
  • 40 Wang W, Li H, Wang J, Zu L. J. Am. Chem. Soc. 2006; 128: 10354
  • 41 Rios R, Súnden H, Ibrahem I, Zhao G.-L, Córdova A. Tetrahedron Lett. 2006; 47: 8679
  • 42 Wei Q, Hou W, Liao N, Peng Y. Adv. Synth. Catal. 2017; 359: 2364
  • 43 Guo J, Wong MW. J. Org. Chem. 2017; 82: 4362
  • 44 Zhao B.-L, Du D.-M. Org. Lett. 2017; 19: 1036
  • 45 Simlandy AK, Mukherjee S. J. Org. Chem. 2017; 82: 4851
  • 46 Zhu Y, Dong Z, Cheng X, Zhong X, Liu X, Lin L, Shen Z, Yang P, Li Y, Wang H, Yan W, Wang K, Wang R. Org. Lett. 2016; 18: 3546
  • 47 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
  • 48 Yang KS, Nibbs AE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
  • 49 Blümel M, Chauhan P, Hahn R, Raabe G, Enders D. Org. Lett. 2014; 16: 6012
  • 50 Hahn R, Raabe G, Enders D. Org. Lett. 2014; 16: 3636
  • 51 Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
  • 52 Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253
  • 53 Han X, Zhou H. -B, Dong C. Chem. Rec. 2016; 16: 897
  • 54 Matoba K, Kawai H, Furukawa T, Kusuda A, Tokunaga E, Nakamura S, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2010; 49: 5762
  • 55 Kawai H, Okusu S, Tokunaga E, Sato H, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2012; 51: 4959
  • 56 Kawai H, Okusu S, Yuan Z, Tokunaga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2013; 52: 2221
  • 57 Kawai H, Yuan Z, Kitayama T, Tokunaga E, Shibata N. Angew. Chem. Int. Ed. 2013; 52: 5575
  • 58 Liu F.-L, Chen J.-R, Feng B, Hu X.-Q, Ye L.-H, Lu L.-Q, Xiao W.-J. Org. Biomol. Chem. 2014; 12: 1057
  • 59 Martinelli E, Vicini AC, Mancinelli M, Mazzanti A, Zani P, Bernardi L, Fochi M. Chem. Commun. 2015; 51: 658
  • 60 Chen J, Meng S, Wang L, Tang H, Huang Y. Chem. Sci. 2015; 6: 4184
  • 61 Zhang ZM, Xu B, Xu S, Wu HH, Zhang J. Angew. Chem. Int. Ed. 2016; 55: 6324
  • 62 Xu S, Zhang Z.-M, Xu B, Liu B, Liu Y, Zhang J. J. Am. Chem. Soc. 2018; 140: 2272
  • 63 CCDC 1900540 (compound 3n) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 64 Kumar PD, Arun V, Kumar NM, Acosta G, Noel B, Shah PK. ChemMedChem 2012; 7: 1915
  • 65 Chen M, Huang ZT, Zheng QY. Chem. Commun. 2012; 48: 11686
  • 66 Fraile JM, Jeune KL, Mayoral JA, Ravasio N, Zaccheria F. Org. Biomol. Chem. 2013; 11: 4327
  • 67 Yan ZL, Chen WL, Gao YR, Mao S, Zhang YL, Wang YQ. Adv. Synth. Catal. 2014; 356: 1085
  • 68 Martinelli E, Vicini AC, Mancinelli M, Mazzanti A, Zani P, Bernardi L, Fochi M. Chem. Commun. 2015; 51: 658