Synlett 2019; 30(11): 1366-1370
DOI: 10.1055/s-0037-1611538
letter
© Georg Thieme Verlag Stuttgart · New York

Alcohol-Directed ortho-C–H Alkenylation

Li Li
,
Qinglan Liu
,
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. of China   Email: chenja@pkusz.edu.cn   Email: huangyong@pkusz.edu.cn
,
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. of China   Email: chenja@pkusz.edu.cn   Email: huangyong@pkusz.edu.cn
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (21825101, 21572004 for Y.H. and 21602007 for J.C.) and Shenzhen Science and Technology Innovation Commission (JCYJ20170818085510474, JCYJ20160226105602871, JCYJ20170818085438996).
Further Information

Publication History

Received: 26 March 2019

Accepted after revision: 24 April 2019

Publication Date:
21 May 2019 (online)


Abstract

We report a simple and mild dehydrogenative cross-coupling reaction of unprotected arylethanols and acrylates. Unlike the case of previous reactions, in which prior functionalization of the substrate with a metal-coordinating site was required, free primary, secondary, or tertiary hydroxy groups were found to be effective directing groups for the ortho-C–H palladation and subsequent olefination.

Supporting Information

 
  • References and Notes

    • 1a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1b Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1c Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 1d Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1e Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 1f Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1g Hopkinson MN, Sahoo B, Li JL, Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 1h Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 2a Leow D, Li G, Mei T.-S, Yu J.-Q. Nature 2012; 486: 518
    • 2b Lee S, Lee H, Tan KL. J. Am. Chem. Soc. 2013; 135: 18778
    • 2c Mo F, Tabor JR, Dong GB. Chem. Lett. 2014; 43: 264
    • 2d Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 2e Rao W.-H, Shi B.-F. Org. Chem. Front. 2016; 3: 1028
    • 2f Patra T, Bag S, Kancherla R, Mondal A, Dey A, Pimparkar S, Agasti S, Modak A, Maiti D. Angew. Chem. Int. Ed. 2016; 55: 7751
    • 2g Dey A, Agasti S, Maiti D. Org. Biomol. Chem. 2016; 14: 5440
    • 3a Bedford RB, Coles SJ, Hursthouse MB, Limmert ME. Angew. Chem. Int. Ed. 2003; 42: 112
    • 3b Grunanger CU, Breit B. Angew. Chem. Int. Ed. 2008; 47: 7346
    • 3c Lightburn TE, Dombrowski MT, Tan KL. J. Am. Chem. Soc. 2008; 130: 9210
    • 3d Wang C, Chen H, Wang Z, Chen J, Huang Y. Angew. Chem. Int. Ed. 2012; 51: 7242
    • 3e Wang C, Sun H, Fang Y, Huang Y. Angew. Chem. Int. Ed. 2013; 52: 5795
    • 3f Sun X, Lee H, Lee S, Tan KL. Nat. Chem. 2013; 5: 790
    • 3g Zhang Q, Yu H.-Z, Li Y.-T, Liu L, Huang Y, Fu Y. Dalton Trans. 2013; 42: 4175
    • 3h Chen Y, Wang D, Duan P, Ben R, Dai L, Shao X, Hong M, Zhao J, Huang Y. Nat. Commun. 2014; 5: 4610
    • 3i Fang Y, Wang C, Su S, Yu H, Huang Y. Org. Biomol. Chem. 2014; 12: 1061
    • 3j Cheng T, Yin W, Zhang Y, Zhang Y, Huang Y. Org. Biomol. Chem. 2014; 12: 1405
    • 3k Sun H, Huang Y. Synlett 2015; 26: 2751
    • 3l Kuninobu Y, Ida H, Nishi M, Kanai M. Nat. Chem. 2015; 7: 712
    • 3m Sun H, Guimond N, Huang Y. Org. Biomol. Chem. 2016; 14: 8389
    • 3n Ma W, Gandeepan P, Li J, Ackermann L. Org. Chem. Front. 2017; 4: 1435
    • 3o Davis HJ, Phipps RJ. Chem. Sci. 2017; 8: 864
  • 4 Falbe J, Bahrmann H, Lipps W, Mayer D, Frey GD. Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2000. DOI: 10.1002/14356007.a01_279.pub2
  • 5 Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparation. VCH; Weinheim: 1989
    • 6a Ferreira EM, Stoltz BM. J. Am. Chem. Soc. 2001; 123: 7725
    • 6b Jensen DR, Pugsley JS, Sigman MS. J. Am. Chem. Soc. 2001; 123: 7475
    • 6c Terao Y, Wakui H, Nomoto M, Satoh T, Miura M, Nomura M. J. Org. Chem. 2003; 68: 5236
    • 6d Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
  • 7 Huang C, Chattopadhyay B, Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 12406
  • 8 Wang C, Ge H. Chem. Eur. J. 2011; 17: 14371
  • 9 Guo K, Chen X, Guan M, Zhao Y. Org. Lett. 2015; 17: 1802
  • 10 Ren Z, Schulz JE, Dong G. Org. Lett. 2015; 17: 2696
  • 11 Knight BJ, Rothbaum JO, Ferreira EM. Chem. Sci. 2016; 7: 1982
    • 12a Mochida S, Shimizu M, Hirano K, Satoh T, Miura M. Chem. Asian J. 2010; 5: 847
    • 12b Xiao B, Gong T.-J, Liu Z.-J, Liu J.-H, Luo D.-F, Xu J, Liu L. J. Am. Chem. Soc. 2011; 133: 9250
    • 12c Wei Y, Yoshikai N. Org. Lett. 2011; 13: 5504
    • 12d Thirunavukkarasu VS, Donati M, Ackermann L. Org. Lett. 2012; 14: 3416
    • 12e Zhao J, Wang Y, He Y, Liu L, Zhu Q. Org. Lett. 2012; 14: 1078
    • 12f Zhang C, Ji J, Sun P. J. Org. Chem. 2014; 79: 3200
    • 12g Finkbeiner P, Kloeckner U, Nachtsheim BJ. Angew. Chem. Int. Ed. 2015; 54: 4949
    • 13a Luo S, Luo F.-X, Zhang X.-S, Shi Z.-J. Angew. Chem. Int. Ed. 2013; 52: 10598
    • 13b Inamoto K, Kadokawa J, Kondo Y. Org. Lett. 2013; 15: 3962
    • 14a Yoshiki K, Tetsuya S, Masahiro M, Masakatsu N. Chem. Lett. 1999; 28: 961
    • 14b Manabe K, Kimura T. Org. Lett. 2013; 15: 374
    • 14c Yamaguchi M, Higuchi M, Tazawa K, Manabe K. J. Org. Chem. 2016; 81: 3967
    • 15a Lu Y, Wang D.-H, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 5916
    • 15b Wang X, Lu Y, Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 12203
    • 15c Lu Y, Leow D, Wang X.-S, Engle KM, Yu J.-Q. Chem. Sci. 2011; 2: 967
    • 15d Morimoto K, Hirano K, Satoh T, Miura M. J. Org. Chem. 2011; 76: 9548
    • 15e Mewald M, Schiffner JA, Oestreich M. Angew. Chem. Int. Ed. 2012; 51: 1763
    • 15f Kandukuri SR, Jiao L.-Y, Machotta AB, Oestreich M. Adv. Synth. Catal. 2014; 356: 1597
    • 16a Liang Q.-J, Yang C, Meng F.-F, Jiang B, Xu Y.-H, Loh T.-P. Angew. Chem. Int. Ed. 2017; 56: 5091
    • 16b Wen Z.-K, Xu Y.-H, Loh T.-P. Chem. Eur. J. 2012; 18: 13284
  • 17 3-[2-(2-Hydroxyethyl)phenyl]acrylate Esters 3aq; General Procedure A flame-dried 15 mL microwave vial containing a stirrer bar was charged with Pd(OAc)2 (4.5 mg, 0.02 mmol, 10 mol%), N-acetylglycine (4.7 mg, 0.04 mmol, 20 mol%), and Ag2CO3 (82.7 mg, 150 mol%, 0.3 mmol). (F3C)2CHOH (1.0 mL), the appropriate alcohol 1 (0.4 mmol), and the appropriate acrylate 2 (0.2 mmol) were then added sequentially. The vial was sealed with a rubber septum and then degassed and backfilled with argon three times. Under a positive argon pressure, the vial was clamped and sealed with an aluminum cap equipped with a septum, then heated at 90 °C for 15 h. The solvent was removed under vacuum, and the product was purified by flash column chromatography. Butyl (2E)-3-[2-(2-Hydroxyethyl)phenyl]acrylate (3a) Purified by flash column chromatography (silica gel, 15% EtOAc–hexanes) as a colorless oil; yield: 29.8 mg (60%). 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 15.8 Hz, 1 H), 7.60 (dd, J = 5.5, 3.2 Hz, 1 H), 7.44–7.16 (m, 4 H), 6.38 (d, J = 15.8 Hz, 1 H), 4.22 (t, J = 6.7 Hz, 2 H), 3.83 (d, J = 4.3 Hz, 2 H), 3.05 (t, J = 6.8 Hz, 2 H), 1.70 (dt, J = 14.6, 6.8 Hz, 2 H), 1.50–1.38 (m, 2 H), 0.97 (t, J = 7.4 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 167.46, 142.20, 138.39, 133.94, 131.16, 130.42, 127.44, 127.12, 120.25, 64.86, 63.67, 36.78, 31.08, 19.53, 14.08. HRMS (APCI): m/z [M + Na]+ calcd for C15H20NaO3: 271.1305; found: 271.1308.