Synthesis 2019; 51(16): 3142-3150
DOI: 10.1055/s-0037-1611520
paper
© Georg Thieme Verlag Stuttgart · New York

Lithium Chloride Catalyzed Aza-Michael Addition of Pyrazoles to α,β-Unsaturated Imides

Hongyan Zhou*
a   College of Science, Gansu Agricultural University, Lanzhou 730070, P. R. of China   Email: zhouhy@gsau.edu.cn
b   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
,
Xiancheng Xiang
b   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
,
Ben Ma
b   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
,
Ganggang Wang
b   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
,
Zhixia Zhang
a   College of Science, Gansu Agricultural University, Lanzhou 730070, P. R. of China   Email: zhouhy@gsau.edu.cn
,
b   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21362034), the Special Funds for Discipline Construction of Gansu Agricultural University (GAU-XKJS-2018-133), and the Program for Improving Scientific Research Ability of Young Teachers of Northwest Normal University (NWNU-LKQN-17-3).
Further Information

Publication History

Received: 23 January 2019

Accepted after revision: 01 April 2019

Publication Date:
17 April 2019 (online)


Abstract

A lithium chloride catalyzed aza-Michael reaction of pyrazoles to α,β-unsaturated imides has been developed. A range of aromatic and aliphatic α,β-unsaturated imides are found to be suitable for the established method, providing the corresponding aza-Michael adducts in up to 93% yields. The inexpensive catalyst, good substrate tolerance, and ease of scale-up make this procedure highly practical.

Supporting Information

 
  • References

    • 1a Roy TK, Parhi B, Ghorai P. Angew. Chem. Int. Ed. 2018; 57: 9397
    • 1b Barát V, Csókás D, Bates RW. J. Org. Chem. 2018; 83: 9088
    • 1c Wu L, Jin R, Li L, Hu X, Cheng T, Liu G. Org. Lett. 2017; 19: 3047
    • 1d Yang X, Chen Z, Cai Y, Huang Y.-Y, Shibata N. Green Chem. 2014; 16: 4530
    • 1e Amara Z, Caron J, Joseph D. Nat. Prod. Rep. 2013; 30: 1211
    • 1f Mikami K, Fustero S, Sánchez-Roselló M, Aceña JL, Soloshonok V, Sorochinsky A. Synthesis 2011; 3045
    • 1g Weiner B, Szymański W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656

      For selected reviews on aza-Michael reaction, see:
    • 2a Zheng K, Liu X, Feng X. Chem. Rev. 2018; 118: 7586
    • 2b Davies SG, Fletcher AM, Roberts PM, Thomson JE. Tetrahedron: Asymmetry 2017; 28: 1842
    • 2c Davies SG, Fletcher AM, Roberts PM, Thomson JE. Synlett 2017; 28: 2697
    • 2d Sánchez-Roselló M, Aceña JL, Simón-Fuentes A, del Pozo C. Chem. Soc. Rev. 2014; 43: 7430
    • 2e Wang J, Li P, Choy PY, Chan AS. C, Kwong FY. ChemCatChem 2012; 4: 917
    • 2f Davies SG, Fletcher AM, Roberts PM, Thomson JE. Tetrahedron: Asymmetry 2012; 23: 1111
    • 2g Enders D, Wang C, Liebich JX. Chem. Eur. J. 2009; 15: 11058
    • 2h Xu L.-W, Xia C.-G. Eur. J. Org. Chem. 2005; 633
    • 2i Davies SG, Smith AD, Price PD. Tetrahedron: Asymmetry 2005; 16: 2833
    • 3a Gandelman M, Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 2393
    • 3b Wang J, Li H, Zu L, Wang W. Org. Lett. 2006; 8: 1391
    • 3c Dinér P, Nielsen M, Marigo M, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 1983
    • 3d Uria U, Vicario JL, Badía D, Carrillo L. Chem. Commun. 2007; 2509
    • 3e Liu BK, Wu Q, Qian XQ, Lv DS, Lin XF. Synthesis 2007; 2653
    • 3f Wang J, Zu L, Li H, Xie H, Wang W. Synthesis 2007; 2576
    • 3g Madhavan N, Takatani T, Sherrill CD, Weck M. Chem. Eur. J. 2009; 15: 1186
    • 3h Luo GS, Zhang SL, Duan WH, Wang W. Synthesis 2009; 1564
    • 3i Lv J, Wu H, Wang Y. Eur. J. Org. Chem. 2010; 2073
    • 3j Zhou Y, Li X, Li W, Wu C, Liang X, Ye J. Synlett 2010; 2357
    • 3k Guo H.-M, Yuan T.-F, Niu H.-Y, Liu J.-Y, Mao R.-Z, Li D.-Y, Qu G.-R. Chem. Eur. J. 2011; 17: 4095
    • 3l Lee S.-J, Youn S.-H, Cho C.-W. Org. Biomol. Chem. 2011; 9: 7734
    • 3m Li H, Zhao J, Zeng L, Hu W. J. Org. Chem. 2011; 76: 8064
    • 3n Uria U, Reyes E, Vicario JL, Badía D, Carrillo L. Org. Lett. 2011; 13: 336
    • 3o Wang J, Wang W, Liu X, Hou Z, Lin L, Feng X. Eur. J. Org. Chem. 2011; 2039
    • 3p Wu H, Tian Z, Zhang L, Huang Y, Wang Y. Adv. Synth. Catal. 2012; 354: 2977
    • 3q Lee S.-J, Ahn J.-G, Cho C.-W. Tetrahedron: Asymmetry 2014; 25: 1383
    • 3r Chen S.-W, Zhang G.-C, Lou Q.-X, Cui W, Zhang S.-S, Hu W.-H, Zhao J.-L. ChemCatChem 2015; 7: 1935
    • 3s Kim S, Kang S, Kim G, Lee Y. J. Org. Chem. 2016; 81: 4048
    • 3t Bhagat UK, Kamaluddin, Peddinti RK. Tetrahedron Lett. 2017; 58: 298
    • 3u Bhagat UK, Peddinti RK. Synlett 2018; 29: 99
    • 3v Chittimalla SK, Nakka S, Koodalingam M, Bandi C. Synlett 2018; 29: 57
    • 3w Bhagat UK, Peddinti RK. J. Org. Chem. 2018; 83: 793
    • 4a Giornal F, Pazenok S, Rodefeld L, Lui N, Vors J.-P, Leroux FR. J. Fluorine Chem. 2013; 152: 2
    • 4b Lamberth C. Heterocycles 2007; 71: 1467
    • 5a Bekhit AA, Hymete A, Bekhit AE. A, Damtew A, Aboul-Enein HY. Mini-Rev. Med. Chem. 2010; 10: 1014
    • 5b Raju H, Chandrappa S, Prasanna DS, Ananda H, Nagamani TS, Byregowda SM, Rangappa KS. Recent Pat. Anti-Cancer Drug Discovery 2011; 6: 186
    • 5c Secci D, Bolasco A, Chimenti P, Carradori S. Curr. Med. Chem. 2011; 18: 5114
    • 5d Kumar GG, Vikas K, Vinod K. Res. J. Chem. Environ. 2011; 15: 90
    • 5e Peng X.-M, Cai G.-X, Zhou C.-H. Curr. Top. Med. Chem. 2013; 13: 1963
    • 5f Kumar H, Saini D, Jain S, Jain N. Eur. J. Med. Chem. 2013; 70: 248
    • 5g Liu J.-J, Zhao M.-Y, Zhang X, Zhao X, Zhu H.-L. Mini-Rev. Med. Chem. 2013; 13: 1957
    • 5h Datar PA, Jadhav SR. Lett. Drug Des. Discovery 2014; 11: 686
    • 5i Pérez-Fernández R, Goya P, Elguero J. ARKIVOC 2014; 233
    • 5j Küçükgüzel ŞG, Şenkardeş S. Eur. J. Med. Chem. 2015; 97: 786
    • 6a Kuwata S, Ikariya T. Chem. Eur. J. 2011; 17: 3542
    • 6b Doidge ED, Roebuck JW, Healy MR, Tasker PA. Coord. Chem. Rev. 2015; 288: 98
    • 7a Brown AW. In Advances in Heterocyclic Chemistry . Scriven EF. V, Ramsden CA. Elsevier; San Diego: 2018. 126, 55
    • 7b Li M, Zhao B.-X. Eur. J. Med. Chem. 2014; 85: 311
    • 7c Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
    • 7d Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 7e Fustero S, Simón-Fuentes A, Sanz-Cervera JF. Org. Prep. Proced. Int. 2009; 41: 253
    • 8a Qian C, Xu J.-M, Wu Q, Lv D.-S, Lin X.-F. Tetrahedron Lett. 2007; 48: 6100
    • 8b Xu J.-M, Qian C, Liu B.-K, Wu Q, Lin X.-F. Tetrahedron 2007; 63: 986
  • 9 Yang L, Xu L.-W, Zhou W, Li L, Xia C.-G. Tetrahedron Lett. 2006; 47: 7723
  • 10 Wang J, Li P.-F, Chan SH, Chan AS. C, Kwong FY. Tetrahedron Lett. 2012; 53: 2887
    • 12a Wu Y.-J. Tetrahedron Lett. 2006; 47: 8459
    • 12b Kawatsura M, Aburatani S, Uenishi J. Tetrahedron 2007; 63: 4172
    • 12c Aburatani S, Kawatsura M, Uenishi J. Heterocycles 2007; 71: 189
    • 12d Uddin MI, Nakano K, Ichikawa Y, Kotsuki H. Synlett 2008; 1402
    • 12e Lee IY. C, Lee KC, Lee HW. Bull. Korean Chem. Soc. 2012; 33: 3535
    • 12f Hayotsyan SS, Khachatryan AN, Baltayan AO, Attaryan HS, Hasratyan GV. Russ. J. Gen. Chem. 2015; 85: 993
    • 13a Li P, Fang F, Chen J, Wang J. Tetrahedron: Asymmetry 2014; 25: 98
    • 13b Zhang J, Zhang Y, Liu X, Guo J, Cao W, Lin L, Feng X. Adv. Synth. Catal. 2014; 356: 3545
    • 13c Lee S.-J, Bae J.-Y, Cho C.-W. Eur. J. Org. Chem. 2015; 6495
    • 14a Khachatryan HN, Hayotsyan SS, Badalyan KS, Attaryan HS, Hasratyan GV. Russ. J. Gen. Chem. 2015; 85: 1982
    • 14b Khachatryan HN. Russ. J. Gen. Chem. 2017; 87: 572
  • 15 Khachatryan HN, Bagdasaryan GA, Hayotsyan SS, Attaryan OS, Danagulyan GG. Russ. J. Gen. Chem. 2016; 86: 1957
    • 16a Sammis GM, Jacobsen EN. J. Am. Chem. Soc. 2003; 125: 4442
    • 16b Sammis GM, Danjo H, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 9928
    • 16c Madhavan N, Weck M. Adv. Synth. Catal. 2008; 350: 419
    • 16d Mazet C, Jacobsen EN. Angew. Chem. Int. Ed. 2008; 47: 1762
    • 16e Madhavan N, Sommer W, Weck M. J. Mol. Catal. A: Chem. 2011; 334: 1
  • 17 Yang J, Ma B, Zhou H, Zhan B, Li Z. Chin. J. Org. Chem. 2015; 35: 121
    • 19a Just D, Hernandez-Guerra D, Kritsch S, Pohl R, Císařová I, Jones PG, Mackman R, Bahador G, Jahn U. Eur. J. Org. Chem. 2018; 5213
    • 19b Hidasová D, Janák M, Jahn E, Císařová I, Jones PG, Jahn U. Eur. J. Org. Chem. 2018; 5222
    • 19c Kafka F, Pohl R, Císařová I, Mackman R, Bahador G, Jahn U. Eur. J. Org. Chem. 2016; 3862
    • 19d Kafka F, Holan M, Hidasová D, Pohl R, Císařová I, Klepetářová B, Jahn U. Angew. Chem. Int. Ed. 2014; 53: 9944
    • 19e Ma Y, Hoepker AC, Gupta L, Faggin MF, Collum DB. J. Am. Chem. Soc. 2010; 132: 15610
    • 19f Jahn U, Kafka F, Pohl R, Jones PG. Tetrahedron 2009; 65: 10917
    • 20a Mark PD. B, Ketav K, Marie-Isabel A. Curr. Pharm. Des. 2017; 23: 3772
    • 20b Kudo F, Miyanaga A, Eguchi T. Nat. Prod. Rep. 2014; 31: 1056
    • 20c Szakonyi Z, Fülöp F. Amino Acids 2011; 41: 597
    • 20d Kuhl A, Hahn MG, Dumić M, Mittendorf J. Amino Acids 2005; 29: 89
    • 20e Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar MI. Curr. Med. Chem. 2002; 9: 811
  • 21 Goodman SN, Jacobsen EN. Adv. Synth. Catal. 2002; 344: 953