Synlett 2019; 30(13): 1555-1560
DOI: 10.1055/s-0037-1610721
letter
© Georg Thieme Verlag Stuttgart · New York

Isothiourea-Catalysed Sequential Kinetic Resolution of Acyclic (±)-1,2-Diols

Siegfried Harrer
,
Mark D. Greenhalgh
,
Rifahath M. Neyyappadath
,
Andrew D. Smith
We thank the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT, grant code EP/L016419/1, R.M.N.) for funding. We thank the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) ERC grant agreement no. 279850 (A.D.S.). A.D.S. thanks the Royal Society for a Wolfson Research Merit Award. We also thank the EPSRC UK National Mass Spectrometry Service at Swansea.
Further Information

Publication History

Received: 30 May 2019

Accepted after revision: 12 June 2019

Publication Date:
10 July 2019 (online)


Abstract

The isothiourea-catalysed acylative kinetic resolution of a range of acyclic (±)-1,2-diols using 1 mol% of catalyst under operationally simple conditions is reported. Significantly, the bifunctional nature of (±)-1,2-diols was exploited in a sequential double kinetic resolution, in which both kinetic resolutions operate synergistically to provide access to highly enantioenriched products. The principles that underpin this process are discussed, and selectivity factors for the individual kinetic resolution steps are reported in a model system.

Supporting Information

 
  • References and Notes

    • 1a Bhowmick KC, Joshi NN. Tetrahedron: Asymmetry 2006; 17: 1901
    • 1b Rychnovsky SD. Chem. Rev. 1995; 95: 2021
    • 1c Hanson RM. Chem. Rev. 1991; 91: 437
    • 1d Tomioka K. Synthesis 1990; 541
    • 1e Whitesell JK. Chem. Rev. 1989; 89: 1581
    • 1f van Leeuwen PW. N. M, Kamer PC. J, Claver C, Pàmies O, Diéguez M. Chem. Rev. 2011; 111: 2077
    • 1g Seebach D, Beck AK, Heckel A. Angew. Chem. Int. Ed. 2001; 40: 92
    • 1h Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 3a Chatterjee A, Joshi NN. Tetrahedron 2006; 62: 12137
    • 3b Takenaka N, Xia G.-Y, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 13198
    • 3c Yang H, Wang H, Zhu C. J. Org. Chem. 2007; 72: 10029
    • 4a Prasad KR. K, Joshi NN. J. Org. Chem. 1996; 61: 3888
    • 4b Murata K, Okano K, Miyagi M, Iwane H, Noyori R, Ikariya T. Org. Lett. 1999; 1: 1119
    • 4c Ohkuma T, Utsumi N, Watanabe M, Tsutsumi K, Arai N, Murata K. Org. Lett. 2007; 9: 2565
    • 4d Kadyrov R, Koenigs RM, Brinkmann C, Voigtlaender D, Rueping M. Angew. Chem. Int. Ed. 2009; 48: 7556
    • 5a Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN. Science 1997; 277: 936
    • 5b Nielsen LP, Stevenson CP, Blackmond DG, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 1360
    • 5c Monaco MR, Prévost S, List B. Angew. Chem. Int. Ed. 2014; 53: 8142
    • 5d Matsunaga S, Das J, Roels J, Vogl EM, Yamamoto N, Iida T, Yamaguchi K, Shibasaki M. J. Am. Chem. Soc. 2000; 122: 2252
    • 5e Zhao L, Han B, Huang Z, Miller M, Huang H, Malashock DS, Zhu Z, Milan A, Robertson DE, Weiner DP, Burk MJ. J. Am. Chem. Soc. 2004; 126: 11156
    • 6a Yang H, Zheng W.-H. Tetrahedron Lett. 2018; 59: 583
    • 6b Murray JI, Heckenast Z, Spivey AC. In Lewis Base Catalysis in Organic Synthesis, Vol. 2. Vedejs E, Denmark SE. Wiley-VCH; Weinheim: 2016: 459
    • 7a Kagan HB, Fiaud JC. In Topics in Stereochemistry, Vol. 18. Eliel EL, Wilen SH. Wiley; New York: 1988: 249
    • 7b Chen C.-S, Fujimoto Y, Girdaukas G, Shi CJ. J. Am. Chem. Soc. 1982; 104: 7294
    • 7c Greenhalgh MD, Taylor JE, Smith AD. Tetrahedron 2018; 74: 5554
    • 7d Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
    • 8a Wu S.-H, Zhang L.-Q, Chen C.-S, Girdaukas G, Shi CJ. Tetrahedron Lett. 1985; 26: 4323
    • 8b Guo Z.-W, Wu S.-H, Chen C.-S, Girdaukas G, Shi CJ. J. Am. Chem. Soc. 1990; 112: 4942
    • 8c Kazlauskas RJ. J. Am. Chem. Soc. 1989; 111: 4953
    • 8d Caron G, Kazlauskas RJ. J. Org. Chem. 1991; 56: 7251
    • 8e Caron G, Kazlauskas RJ. Tetrahedron: Asymmetry 1993; 4: 1995
    • 8f Kaga H, Yamauchi Y, Narumi A, Yokota K, Kakuchi T. Enantiomer 1998; 3: 203
    • 8g Kroutil W, Kleewein A, Faber K. Tetrahedron: Asymmetry 1997; 8: 3263
    • 9a Vigneron J.-P, Dhaenes M, Horeau A. Tetrahedron 1973; 29: 1055
    • 9b Harned AM. Tetrahedron 2018; 74: 3797
    • 10a Mizuta S, Ohtsubo Y, Tsuzuki T, Fujimoto T, Yamamoto I. Tetrahedron Lett. 2006; 47: 8227
    • 10b Müller CE, Wanka LJewell K, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 6180
    • 10c Hrdina R, Müller CE, Schreiner PR. Chem. Commun. 2010; 46: 2689
    • 10d Hrdina R, Müller CE, Wende RC, Wanka L, Schreiner PR. Chem. Commun. 2012; 48: 2498
    • 10e Müller CE, Zell D, Hrdina R, Wende RC, Wanka L, Schuler SM, Schreiner PR. J. Org. Chem. 2013; 78: 8465
    • 10f Hofmann C, Schuler SM. M, Wende RC, Schreiner PR. Chem. Commun. 2014; 50: 1221
    • 10g Hofmann C, Schümann JM, Schreiner PR. J. Org. Chem. 2015; 80: 1972
    • 10h Kuwano S, Harada S, Kang B, Oriez R, Yamaoka Y, Takasu K, Yamada K.-I. J. Am. Chem. Soc. 2013; 135: 11485
    • 10i Iwahana S, Iida H, Yashima E. Chem. Eur. J. 2011; 17: 8009
    • 10j Fujii K, Mitsudo K, Mandai H, Suga S. Adv. Synth. Catal. 2017; 359: 2778
    • 10k Mandai H, Fujii K, Yasuhara H, Abe K, Mitsudo K, Korenaga T, Suga S. Nat. Commun. 2016; 7: 11294
  • 11 Selectivity factor (s) is the most commonly used metric to report the efficiency of a KR, is defined as the rate constant for the fast reacting enantiomer divided by the rate constant for the slow reacting enantiomer (s = k fast/k slow) and is calculated by using the reaction conversion and either the ee of the recovered substrate{s = ln[(1−c)(1−eesubstrate)]/ln[(1−c)(1+eesubstrate)]}or ee of the reaction product{s = ln[(1−c(1+eeproduct)]/ln[(1−c(1−eeproduct)]}See references 7a and 7c for more details. For biocatalysed processes an analogous metric, E (enantiomeric ratio), is used, see reference 7b.
  • 12 Burns AS, Wagner AJ, Fulton JL, Young K, Zakarin A, Rychnovsky SD. Org. Lett. 2017; 19: 2953
    • 13a Birman VB, Li X. Org. Lett. 2006; 8: 1351
    • 13b Birman VB, Guo L. Org. Lett. 2006; 8: 4859
    • 13c Shiina I, Nakata K. Tetrahedron Lett. 2007; 48: 8314
    • 13d Birman VB, Li X. Org. Lett. 2008; 10: 1115
    • 13e Hu Q, Zhou H, Geng X, Chen P. Tetrahedron 2009; 65: 2232
    • 13f Shiina I, Nakata K, Ono K, Sugimoto M, Sekiguchi A. Chem. Eur. J. 2010; 16: 167
    • 13g Belmessieri D, Joannesse C, Woods PA, MacGregor C, Jones C, Campbell CD, Johnston CP, Duguet N, Concellón C, Bragg RA, Smith AD. Org. Biomol. Chem. 2011; 9: 559
    • 13h Li X, Jiang H, Uffman EW, Guo L, Zhang Y, Yang X, Birman VB. J. Org. Chem. 2012; 77: 1722
    • 13i Nakata K, Gotoh K, Ono K, Futami K, Shiina I. Org. Lett. 2013; 15: 1170
    • 13j Shiina I, Ono K, Nakahara T. Chem. Commun. 2013; 49: 10700
    • 13k Musolino SF, Ojo OS, Westwood NJ, Taylor JE, Smith AD. Chem. Eur. J. 2016; 22: 18916
    • 13l Neyyappadath RM, Chisholm R, Greenhalgh MD, Rodríguez-Escrich C, Pericàs MA, Hähner G, Smith AD. ACS Catal. 2018; 8: 1067
    • 14a Greenhalgh MD, Smith SM, Walden DM, Taylor JE, Brice Z, Robinson ER. T, Fallan C, Cordes DB, Slawin AM. Z, Richardson HC, Grove MA, Cheong PH.-Y, Smith AD. Angew. Chem. Int. Ed. 2018; 57: 3200
    • 14b Guha NR, Neyyappadath RM, Greenhalgh MD, Chisholm R, Smith SM, McEvoy ML, Young CM, Rodríguez-Escrich C, Pericàs MA, Hähner G, Smith AD. Green Chem. 2018; 20: 4537
    • 15a Birman VB, Jiang H, Li X. Org. Lett. 2007; 9: 3237
    • 15b Merad J, Borkar P, Yenda TB, Roux C, Pons J.-M, Parrain J.-L, Chuzel O, Bressy C. Org. Lett. 2015; 17: 2118
  • 16 Merad J, Pons J.-M, Chuzel O, Bressy C. Eur. J. Org. Chem. 2016; 5589
  • 17 Merad J, Borkar P, Caijo F, Pons J.-M, Parrain J.-L, Chuzel O, Bressy C. Angew. Chem. Int. Ed. 2017; 56: 16052
  • 18 Qu S, Greenhalgh MD, Smith AD. Chem. Eur. J. 2019; 25: 2816
  • 19 (±)-1,2-Diphenylethane-1,2-diol (2)THF (4 equiv.) was added to a solution of TiCl4 (1 equiv.) in anhydrous CH2Cl2 (0.5 M) under an N2 atmosphere at r.t. and was allowed to stir for 30 s. Zinc powder (0.5 equiv.) was added, and after a further 30 s N,N,N′,N′-tetramethylethylenediamine (1.5 equiv.) was added. After 30 s, a solution of benzaldehyde (1 mL, 10 mmol, 1 equiv.) in CH2Cl2 (1 M) was added and the mixture allowed to stir at r.t. for 1 h. HCl (1 M) was added and the mixture extracted with EtOAc (3 times). The combined organic fractions were washed with brine, dried (Na2SO4), filtered and concentrated to give a residue, which was purified by Biotage flash silica column chromatography (0→40% EtOAc in n-hexane) to give a colourless solid, which was further purified by recrystallisation: the material was dissolved hot PhMe/hexane (1:1), allowed to cool to r.t. and then cooled in a freezer overnight. The product was filtered and washed with cold hexane to give (±)-1,2-diphenylethane-1,2-diol as colourless crystals (single diastereoisomer, 768 mg, 3.59 mmol, 72% yield). Mp 121 °C (Lit.25 mp 121 °C); 1H NMR (500 MHz, CDCl3): δ = 2.84 (s, 2 H, OH), 4.72 (s, 2 H, HCOH), 7.10–7.16 (m, 4 H, ArH), 7.21–7.27 (m, 6 H, ArH). Spectral data in accordance with the literature.28
  • 20 KR of (±)-1,2-Diols: General ProcedureHyperBTM 1 (x mol%), (i-PrCO)2O (y equiv.) and i-Pr2NEt (z equiv.) were added to a solution of the appropriate (±)-1,2-diol (1 equiv.) in the given solvent (0.2 M) and at the given temperature, and the mixture allowed to stir for 7 h. HCl (1 M) was added and the mixture extracted with EtOAc (3 times). The combined organic fractions were washed sequentially with saturated NaHCO3 and brine, dried (Na2SO4), filtered and concentrated to give a residue, which was purified by Biotage flash silica column chromatography (0→40% EtOAc in hexane) to give the diester, monoester and diol products, which were analysed by HPLC using a chiral support – see Supporting Information for more details.
  • 21 This s value was calculated by usings = ln[(1−c)(1−eesubstrate)] / ln[(1−c)(1+eesubstrate)]and assumes the reaction is irreversible and the er of the diol substrate is exclusively determined by the selectivity associated with the first KR process.
  • 22 See Supporting Information for more details.
  • 23 Macfarlane EL. A, Roberts SM, Turner NJ. J. Chem. Soc., Chem. Commun. 1990; 569
  • 24 In contrast, the selectivity factor (s) of a single step KR is, by definition, independent of conversion. See references 7a and 7b.
  • 25 Morrill LC, Douglas J, Lebl T, Slawin AM. Z, Fox DJ, Smith AD. Chem. Sci. 2013; 4: 4146
  • 26 Both enantiomers are available from Apollo Scientific {(2S,3R) CAS Reg. No. [1203507-02-1]; (2R,3S) CAS Reg. No. [1699751-03-5]}.
  • 27 The research data underpinning this publication can be found at: https://doi.org/10.17630/45a265c9-c200-47ef-979d-cb3ed157e4c0.
  • 28 Jahn E, Smrček J, Pohl R, Cisařovà I, Jones PG, Jahn U. Eur. J. Org. Chem. 2015; 7785