Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(13): 1791-1795
DOI: 10.1055/s-0037-1610194
DOI: 10.1055/s-0037-1610194
letter
Reaction of 1-Trimethylsilyl-1,2-epoxy-3-alkanols with Alkynes and Application to the Synthesis of 18-HEPE
This work was supported by JSPS KAKENHI Grant Number JP15H05904.Further Information
Publication History
Received: 27 April 2018
Accepted after revision: 04 June 2018
Publication Date:
29 June 2018 (online)
Abstract
A reaction of epoxy alcohols (anti and/or syn isomers) derived from (E)-TMS-CH=CHCH(OH)R with TMS-C≡CLi in THF/HMPA stereoselectively afforded (E)-TMS-C≡C-CH=CHCH(OH)R. The (E) stereochemistry was independent of the anti/syn stereochemistry, but the syn isomers showed higher reactivity than the anti isomers. The reaction was applied to the synthesis of (18R)- and (18S)-HEPE.
Key words
alkynes - epoxide ring opening - silicon - stereoselective synthesis - Castro–Stephens coupling - eicosapentaenoic acidSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610194.
- Supporting Information
-
References and Notes
- 1 Hudrlik PF. Peterson D. Rona RJ. J. Org. Chem. 1975; 40: 2263
- 2a Kitano Y. Matsumoto T. Sato F. J. Chem. Soc., Chem. Commun. 1986; 1323
- 2b Alexakis A. Jachiet D. Tetrahedron 1989; 45: 381
- 2c Zhang Y. Miller JA. Negishi E. J. Org. Chem. 1989; 54: 2043
- 2d Soderquist JA. Santiago B. Tetrahedron Lett. 1989; 30: 5693
- 3a Kim K. Okamoto S. Takayama Y. Sato F. Tetrahedron Lett. 2002; 43: 4237
- 3b Lowe JT. Panek JS. Org. Lett. 2005; 7: 3231
- 3c Allegretti PA. Ferreira EM. Org. Lett. 2011; 13: 5924
- 3d Lee J. Panek JS. Org. Lett. 2011; 13: 502
- 3e Wu J. Pu Y. Panek JS. J. Am. Chem. Soc. 2012; 134: 18440
- 4a Goto T. Urabe D. Masuda K. Isobe Y. Arita M. Inoue M. J. Org. Chem. 2015; 80: 7713
- 4b Babudri F. Fiandanese V. Marchese G. Punzi A. Tetrahedron 2000; 56: 327
- 5a Börding S. Bach T. Chem. Commun. 2014; 50: 4901
- 5b Rao AV. R. Reddy SP. Reddy ER. J. Org. Chem. 1986; 51: 4158
- 5c Rao AV. R. Reddy ER. Tetrahedron Lett. 1986; 27: 2279
- 6a Miyaoka H. Hara Y. Shinohara I. Kurokawa T. Yamada Y. Tetrahedron Lett. 2005; 46: 7945
- 6b Alami M. Linstrumelle G. Tetrahedron Lett. 1991; 32: 6109
- 7a Avignon-Tropis M. Treilhou M. Pougny JR. Fréchard-Ortuno I. Linstrumelle G. Tetrahedron 1991; 47: 7279
- 7b Nicolaou KC. Webber SE. J. Am. Chem. Soc. 1984; 106: 5734
- 8a Suh Y.-G. Min K.-H. Lee Y.-S. Seo S.-Y. Kim S.-H. Park H.-J. Tetrahedron Lett. 2002; 43: 3825
- 8b Yadav JS. Barma DK. Dutta D. Tetrahedron Lett. 1997; 38: 4479
- 8c Alami M. Crousse B. Linstrumelle G. Mambu L. Larchevêqu M. Tetrahedron: Asymmetry 1997; 8: 2949
- 8d Hearn MT. W. Jones ER. H. Pellatt MG. Thaller V. Turner JL. J. Chem. Soc., Perkin Trans. I 1973; 2785
- 9a Kato T. Nakai T. Ishikawa R. Iio Y. Heterocycles 2002; 56: 119
- 9b Krishnamurthy VR. Dougherty A. Haller CA. Chaikof EL. J. Org. Chem. 2011; 76: 5433
- 9c Isobe Y. Arita M. Matsueda S. Iwamoto R. Fujihara T. Nakanishi H. Taguchi R. Masuda K. Sasaki K. Urabe D. Inoue M. Arai H. J. Biol. Chem. 2012; 287: 10525
- 10a Serhan CN. Clish CB. Brannon J. Colgan SP. Chiang N. Gronert K. J. Exp. Med. 2000; 192: 1197
- 10b Arita M. Bianchini F. Aliberti J. Sher A. Chiang N. Hong S. Yang R. Petasis NA. Serhan CN. J. Exp. Med. 2005; 201: 713
- 10c Oh SF. Pillai PS. Recchiuti A. Yang R. Serhan CN. J. Clin. Invest. 2011; 121: 569
- 11 To an ice-cold solution of 2a (0.40 mL, 2.89 mmol) and n-BuLi (1.55 M in hexane, 1.60 mL, 2.48 mmol) in THF (0.1 mL) were added HMPA (0.95 mL, 5.44 mmol) and a solution of 1a (anti) (65 mg, 0.30 mmol) in THF (0.2 mL). After being stirred at rt for 3 h, the solution was diluted with saturated NH4Cl. The mixture was extracted with EtOAc and the crude product was purified by chromatography on silica gel (hexane/EtOAc) to afford enyne rac-3a (41 mg, 60%). Liquid, Rf = 0.43 (hexane/EtOAc 9:1). 1H NMR (300 MHz, CDCl3): δ = 0.19 (s, 9 H), 0.88 (t, J = 6.9 Hz, 3 H), 1.20–1.66 (m, 9 H), 4.08–4.22 (m, 1 H), 5.72 (dd, J = 15.9 Hz, 1.5 Hz, 1 H), 6.20 (dd, J = 15.9, 6.3 Hz, 1 H) ppm. 13C–APT NMR (75 MHz, CDCl3): δ = –0.05 (+), 14.1 (+), 22.6 (–), 25.0 (–), 31.8 (–), 36.9 (–), 72.3 (+), 95.1 (–), 103.2 (–), 109.8 (+), 147.0 (+) ppm. HRMS (FAB+): m/z [M + Na]+ calcd for C13H24OSiNa: 247.1494; found: 247.1490.
- 12 Nanba Y. Shinohara R. Morita M. Kobayashi Y. Org. Biomol. Chem. 2017; 15: 8614
- 13a Spinella A. Caruso T. Martino M. Sessa C. Synlett 2001; 1971
- 13b Caruso T. Spinella A. Tetrahedron 2003; 59: 7787
- 14a Ng CY. Kwok TX. W. Tan FC. K. Low C.-M. Lam Y. Chem. Commun. 2017; 53: 1813
- 14b Li C. Xu W. Vadivel SK. Fan P. Makriyannis A. J. Med. Chem. 2005; 48: 6423
- 15 Castro–Stephens coupling of rac-7 (1.2 equiv) with Z-allylic bromide i (1 equiv) using CuI (2 equiv), NaI (2 equiv), and K2CO3 (1.5 equiv) at rt in DMF gave a mixture of rac-12 and the regioisomer ii in a 3:1 ratio (1H NMR), which were hardly separated by chromatography on silica gel (Scheme 6). The mixture was converted into 18-HEPE and the regioisomer by a sequence of reactions: 1) TBAF; 2) Zn (Cu/Ag); 3) LiOH; an attempted separation at each step was hardly successful.
Previous syntheses of 18-HEPE: