Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(14): 2707-2720
DOI: 10.1055/s-0037-1610153
DOI: 10.1055/s-0037-1610153
short review
Approaches for Performing Reductions under Continuous-Flow Conditions
This work was supported by the National Research Foundation (NRF) of South Africa (grant number 87893), the University of Pretoria and Pelchem Pty Ltd.Further Information
Publication History
Received: 05 March 2018
Accepted after revision: 18 April 2018
Publication Date:
18 June 2018 (online)
Abstract
A concise overview of approaches to perform reductions of various functionalities including aldehydes, ketones, esters, imines, nitriles, nitro groups, alkenes and alkynes under continuous-flow conditions are highlighted and discussed in this short review.
1 Introduction
2 Reduction of Aldehydes, Ketones and Esters
3 Reduction of Imines and Nitriles
4 Reduction of Nitro Groups
5 Reduction of Alkenes
6 Partial Reduction of Alkynes
7 Conclusion
-
References
- 1a Ley SV. Fitzpatrick DE. Ingham RJ. Myers RM. Angew. Chem. Int. Ed. 2015; 54: 3449
- 1b Ley SV. Fitzpatrick DE. Myers RM. Battilocchio C. Ingham RJ. Angew. Chem. Int. Ed. 2015; 54: 10122
- 2 Plutschack MB. Pieber B. Gilmore K. Seeberger PH. Chem. Rev. 2017; 117: 11796
- 3a Jas G. Kirschning A. Chem. Eur. J. 2003; 9: 5708
- 3b Smith CD. Baxendale IR. Tranmer GK. Baumann M. Smith SC. Lewthwaite RA. Ley SV. Org. Biomol. Chem. 2007; 5: 1562
- 3c Mercadante MA. Leadbeater NE. Org. Biomol. Chem. 2011; 9: 6575
- 4 Gilmore K. Vukelic S. McQuade DT. Koksch B. Seeberger PH. Org. Process Res. Dev. 2014; 18: 1771
- 5 Cossar PJ. Hizartzidis L. Simone MI. McCluskey A. Gordon CP. Org. Biomol. Chem. 2015; 13: 7119
- 6 Kirschning A. Monenschein H. Wittenberg R. Angew. Chem. Int. Ed. 2001; 40: 650
- 7 Mandala D. Chada S. Watts P. Org. Biomol. Chem. 2017; 15: 3444
- 8 Sedelmeier J. Ley SV. Baxendale IR. Green Chem. 2009; 11: 683
- 9 Matsuda T. Watanabe K. Kamitanaka T. Harada T. Nakamura K. Chem. Commun. 2003; 1198
- 10 De Angelis S. De Renzo M. Carlucci C. Degennaro L. Luisi R. Org. Biomol. Chem. 2016; 14: 4304
- 11 Ahmed-Omer B. Sanderson AJ. Org. Biomol. Chem. 2011; 9: 3854
- 12 Ballerini E. Maggi R. Pizzo F. Piermatti O. Gelman D. Vaccaro L. Org. Process Res. Dev. 2016; 20: 474
- 13 Burns NZ. Baran PS. Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854
- 14 Webb D. Jamison TF. Org. Lett. 2012; 14: 568
- 15 Webb D. Jamison TF. Org. Lett. 2012; 14: 2465
- 16 Newton S. Carter CF. Pearson CM. Alves LD. Lange H. Thansandote P. Ley SV. Angew. Chem. Int. Ed. 2014; 53: 4915
- 17 Fukuyama T. Chiba H. Kuroda H. Takigawa T. Kayano A. Tagami K. Org. Process Res. Dev. 2016; 20: 503
- 18 Munoz JD. Alcazar J. de la Hoz A. Diaz-Ortiz A. Eur. J. Org. Chem. 2012; 260
- 19 Fan XL. Sans V. Yaseneva P. Plaza DD. Williams J. Lapkin A. Org. Process Res. Dev. 2012; 16: 1039
- 20 Saaby S. Knudsen KR. Ladlow M. Ley SV. Chem. Commun. 2005; 2909
- 21 Fernandes SD. Porta R. Barrulas PC. Puglisi A. Burke AJ. Benaglia M. Molecules 2016; 21: 1182
- 22 Artiukha EA. Nuzhdin AL. Bukhtiyarova GA. Zaytsev SY. Plyusnin PE. Shubin YV. Bukhtiyarov VI. Catal. Sci. Technol. 2015; 5: 4741
- 23 Liu J. Fitzgerald AE. Mani NS. Synthesis 2012; 44: 2469
- 24 Ducry L. Roberge DM. Org. Process Res. Dev. 2008; 12: 163
- 25 Munoz JD. Alcazar J. de la Hoz A. Diaz-Ortiz A. Tetrahedron Lett. 2011; 52: 6058
- 26 Sharma SK. Lynch J. Sobolewska AM. Plucinski P. Watson RJ. Williams JM. J. Catal. Sci. Technol. 2013; 3: 85
- 27a Guttieri MJ. Maier WF. J. Org. Chem. 1984; 49: 2875
- 27b Stiles M. Finkbeiner HL. J. Am. Chem. Soc. 1959; 81: 505
- 27c Lehmann J. Jiang N. Behncke A. Arch. Pharm. 1993; 326: 813
- 27d Hollinshead SP. Trudell ML. Skolnick P. Cook JM. J. Med. Chem. 1990; 33: 1062
- 27e Secrist JA. Logue MW. J. Org. Chem. 1972; 37: 335
- 28 UNIQSIS Flow Chemistry Page, http://www.uniqsis.com/fcApplications.aspx (accessed May 25, 2018).
- 29 Cantillo D. Baghbanzadeh M. Kappe CO. Angew. Chem. Int. Ed. 2012; 51: 10190
- 30 Glasnov TN. Kappe CO. Adv. Synth. Catal. 2010; 352: 3089
- 31 Moghaddam MM. Pieber B. Glasnov T. Kappe CO. ChemSusChem 2014; 7: 3122
- 32 Hartwig J. Ceylan S. Kupracz L. Coutable L. Kirschning A. Angew. Chem. Int. Ed. 2013; 52: 9813
- 33 Neyt NC. Riley DL. React. Chem. Eng. 2018; 3: 17
- 34 Tsubogo T. Oyamada H. Kobayashi S. Nature 2015; 520: 329
- 35 Porta R. Puglisi A. Colombo G. Rossi S. Benaglia M. Beilstein J. Org. Chem. 2016; 12: 2614
- 36 Mak XY. Laurino P. Seeberger PH. Beilstein J. Org. Chem. 2009; 5: No. 19
- 37 Jones RV. Godorhazy L. Varga N. Szalay D. Urge L. Darvas F. J. Comb. Chem. 2006; 8: 110
- 38 Carter CF. Baxendale IR. O’Brien M. Pavey JB. J. Ley SV. Org. Biomol. Chem. 2009; 7: 4594
- 39 O’Brien M. Taylor N. Polyzos A. Baxendale IR. Ley SV. Chem. Sci. 2011; 2: 1250
- 40 Ouchi T. Battilocchio C. Hawkins JM. Ley SV. Org. Process Res. Dev. 2014; 18: 1560
- 41a Cooper CG. F. Lee ER. Silva RA. Bourque AJ. Clark S. Katti S. Nivorozhkin V. Org. Process Res. Dev. 2012; 16: 1090
- 41b Carter CF. Baxendale IR. Pavey JB. J. Ley SV. Org. Biomol. Chem. 2010; 8: 1588
- 42 Fan X. Sans V. Sharma SK. Plucinski PK. Zaikovskii VA. Wilson K. Tennison SR. Kozynchenko A. Lapkin AA. Catal. Sci. Technol. 2016; 6: 2387
- 43 Osako T. Torii K. Tazawa A. Uozumi Y. RSC Adv. 2015; 5: 45760
- 44 Hudson R. Hamasaka G. Osako T. Yamada YM. A. Li CJ. Uozumi Y. Moores A. Green Chem. 2013; 15: 2141
- 45a Bakker JJ. W. Zieverink MM. P. Reintjens RW. E. G. Kapteijn F. Moulijn JA. Kreutzer MT. ChemCatChem 2011; 3: 1155
- 45b Carter CF. Lange H. Sakai D. Baxendale IR. Ley SV. Chem. Eur. J. 2011; 17: 3398
- 45c Brasholz M. Macdonald JM. Saubern S. Ryan JH. Holmes AB. Chem. Eur. J. 2010; 16: 11471
- 46 Liguori F. Barbaro P. J. Catal. 2014; 311: 212
- 47 Liguori F. Barbaro P. Catal. Sci. Technol. 2014; 4: 3835
- 48 Vile G. Almora-Barrios N. Mitchell S. Lopez N. Perez-Ramirez J. Chem. Eur. J. 2014; 20: 5926
- 49 Vile G. Perez-Ramirez J. Nanoscale 2014; 6: 13476
- 50 Kleinke AS. Jamison TF. Org. Lett. 2013; 15: 710