Subscribe to RSS
DOI: 10.1055/s-0037-1610128
Syntheses, Solid State Structures and Photochemistry of α,ω-Bis-[(1,8-dichloroanthracen-10-yl)dimethylsilyl]alkanes
This work was financially supported by Deutsche Forschungsgemeinschaft (DFG, grant no. MI 477/25-3, project no. 248859450).Publication History
Received: 09 March 2018
Accepted after revision: 07 April 2018
Publication Date:
06 June 2018 (online)
‡ These authors contributed equally to this work.
Abstract
Starting from 10-bromo-1,8-dichloroanthracene, a series of 1,8-dichlorinated anthracene derivatives, flexibly bridged in position 10 by –Me2Si– and –Me2Si–(CH2) n –SiMe2– linker units, were synthesised. The linked anthracenes were generated by converting (1,8-dichloroanthracen-10-yl)lithium with chlorosilanes in salt-elimination reactions. The bichromophors were tested in UV light induced photo reactions. None of the new compounds yielded any intra- or intermolecular photoproduct. All α,ω-(dimethylsilyl)alkane-linked bisanthracenes decomposed to give 1,8-dichloro-9-hydroxyanthracen-10(9H)-one in the presence of oxygen. A completely different behaviour was shown by the bisanthracenyldimethylsilane, undergoing a 9,10:3′,4′-photocyclomerisation reaction. The new compounds were characterised by NMR spectroscopy, mass spectrometry and in most cases by X-ray diffraction studies.
Key words
anthracenes - salt metathesis reactions - solid-state structures - photocyclomerisation - oxygenationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610128.
- Supporting Information
-
References
- 1a Toyota S. Goichi M. Kotani M. Angew. Chem. Int. Ed. 2004; 43: 2248 ; Angew. Chem. 2004, 116, 2298
- 1b Tsuya T. Iritani K. Tahara K. Tobe Y. Iwanaga T. Toyota S. Chem. Eur. J. 2015; 21: 5520
- 1c Fudickar W. Linker T. J. Am. Chem. Soc. 2012; 134: 15071
- 1d Fudickar W. Linker T. J. Org. Chem. 2017; 82: 9258
- 2a Katz HE. J. Org. Chem. 1989; 54: 2179
- 2b Li Y. Köse ME. Schanze KS. J. Phys. Chem. B 2013; 117: 9025
- 2c Chmiel J. Neumann B. Stammler H.-G. Mitzel NW. Chem. Eur. J. 2010; 16: 11906
- 2d Lamm J.-H. Niermeier P. Mix A. Chmiel J. Neumann B. Stammler H.-G. Mitzel NW. Angew. Chem. Int. Ed. 2014; 53: 7938; Angew. Chem. 2014, 126, 8072
- 3a Bouas-Laurent H. Castellan A. Desvergne J.-P. Pure Appl. Chem. 1980; 52: 2633
- 3b Desvergne J.-P. Bouas-Laurent H. J. Chem. Soc., Chem. Comm. 1978; 403
- 4 Lamm J.-H. Niermeier P. Körte LA. Neumann B. Stammler H.-G. Mitzel NW. Synthesis 2018; 50: 2009
- 5 Becker H.-D. Chem. Rev. 1993; 93: 145
- 6 Lamm J.-H. Vishnevskiy YuV. Ziemann E. Kinder TA. Neumann B. Stammler H.-G. Mitzel NW. Eur. J. Inorg. Chem. 2014; 941
- 7 Cordero B. Gómez V. Platero-Prats AE. Revés M. Echeverría J. Cremades E. Barragán F. Alvarez S. Dalton Trans. 2008; 2832
- 8a Desvergne J.-P. Bitit N. Pillot J.-P. Bouas-Laurent H. J. Chem. Res. 1989; 146
- 8b Felix G. Lapouyade R. Bouas-Laurent H. Clin B. Tetrahedron Lett. 1976; 26: 2277
- 8c Desvergne J.-P. Bitit N. Castellan A. Webb M. Bouas-Laurent H. J. Chem. Soc., Perkin Trans. 2 1988; 1885
- 9 Klaper M. Wessig P. Linker T. Chem. Commun. 2016; 52: 1210
- 10 Karama U. Sultan MA. Ghabour HA. Fun HK. Warad IKh. Z. Kristallogr. - New Cryst. Struct. 2013; 228: 405
- 11 Daney M. Vanucci C. Desvergne J.-P. Castellan A. Bouas-Laurent H. Tetrahedron Lett. 1985; 26: 1505
- 12 Becker H.-D. Skelton BW. White AH. Aust. J. Chem. 1989; 42: 1869
- 13 Hine J. Brown JA. Zalkow LH. Gardner WE. Hine M. J. Am. Chem. Soc. 1955; 77: 594
- 14a Chmiel J. Heesemann I. Mix A. Neumann B. Stammler H.-G. Mitzel NW. Eur. J. Org. Chem. 2010; 3897
- 14b Lamm J.-H. Vishnevskiy YuV. Ziemann E. Neumann B. Stammler H.-G. Mitzel NW. ChemistryOpen 2018; 7: 111
- 15a Becker H.-D. Hansen L. Andersson K. J. Org. Chem. 1986; 51: 2956
- 15b Sakurai H. Sakamoto K. Nakamura A. Kira M. Chem. Lett. 1985; 497
- 15c Nishimae Y. Kurata H. Oda M. Angew. Chem. Int. Ed. 2004; 43: 4947 ; Angew. Chem. 2004, 116, 5055
- 16 Becker H.-D. Skelton BW. White AH. Aust. J. Chem. 1991; 44: 181
- 17 Toyama H. Nakamura M. Nakamura M. Matsumoto Y. Nakagomi M. Hashimoto Y. Bioorg. Med. Chem. 2014; 22: 1948
- 18 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
- 19 CCDC 1824699 (2), 1824700 (3), 1824701 (4), 1003188 (5), 1824702 (7), 1824703 (8), 1003186 (9), 1003187 (10), 1003190 (11), 1824704 (12) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
Examples for organic applications:
Examples of organometallic applications, for example:
Examples for 9,10:1′,2′-photocyclomers: