Synthesis 2018; 50(18): 3662-3670
DOI: 10.1055/s-0037-1610088
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis

Institut de Chimie (UMR CNRS 7177), Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France   Email: dagorne@unistra.fr
› Author Affiliations
Further Information

Publication History

Received: 06 April 2018

Accepted after revision: 11 May 2018

Publication Date:
28 June 2018 (online)


Published as part of the Special Section on the Main Group Metal Chemistry Symposium

Abstract

The present contribution reviews the synthesis, reactivity, and use in catalysis of NHC–Zn complexes reported since 2013. NHC-stabilized Zn(II) species typically display enhanced stability relative to common organozinc species (such as Zn dialkyls), a feature of interest for the mediation of various chemical processes and the stabilization of reactive Zn-based species. Their use in catalysis is essentially dominated by reduction reactions of various unsaturated small molecules (including CO2), thus primarily involving Zn–H and Zn–alkyl derivatives as catalysts. Simple NHC adducts of Zn(II) dihalides also appear as effective catalysts for the reduction amination of CO2 and borylation of alkyl/aryl halides. Stable and well-defined Zn alkoxides have also been prepared and behave as effective catalysts in the polymerization of cyclic esters/carbonates for the production of well-defined biodegradable materials. Overall, the attractive features of NHC-based Zn(II) species include ready access, a reasonable stability/reactivity balance, and steric/electronic tunability (through the NHC source), which should promote their further development.

1 Introduction

2 NHC-Supported Zinc Alkyl/Aryl Species

2.1 Synthesis

2.2 Reactivity and Use in Catalysis

3 NHC-Supported Zinc Hydride Species

3.1 Synthesis

3.2 Reactivity and Use in Catalysis

4 NHC-Supported Zinc Amido/Alkoxide Species

4.1 Synthesis

4.2 Use in Catalysis

5 NHC-Supported Zinc Dihalide Species

5.1 Synthesis

5.2 Use in Catalysis

6 Other NHC-Stabilized Zn Species

7 Conclusion

 
  • References

  • 1 Arduengo AJ. III. Acc. Chem. Res. 1999; 32: 913
  • 2 Bourissou D. Guerret O. Gabbaï FP. Bertrand G. Chem. Rev. 2000; 100: 39
  • 3 Herrmann WA. Köcher C. Angew. Chem. Int. Ed. 1997; 36: 2162
  • 4 Arnold PL. Casely IJ. Chem. Rev. 2009; 109: 3599
  • 5 Bellemin-Laponnaz S. Dagorne S. Chem. Rev. 2014; 114: 8747
  • 6 Fliedel C. Schnee G. Avilés T. Dagorne S. Coord. Chem. Rev. 2014; 275: 63
  • 7 Nolan SP. N-Heterocyclic Carbenes in Synthesis. Wiley-VCH; Weinheim: 2006
  • 8 Díez-González S. N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, RSC Catalysis Series. RSC Publishing; Cambridge: 2011
  • 9 Hirose T. Kodama K. In Comprehensive Organic Synthesis . Knochel P. Molander GA. Elsevier; Amsterdam: 2014. 2nd ed., Vol. 1 204-266
  • 10 Arduengo AJ. III. Rasika Dias HV. Davidson F. Harlow RL. J. Organomet. Chem. 1993; 462: 13
  • 11 Budagumpi S. Endud S. Organometallics 2013; 32: 1537
  • 12 Schnee G. Fliedel C. Avilés T. Dagorne S. Eur. J. Inorg. Chem. 2013; 3699
  • 13 Waters JB. Turbervill RS. P. Goicochea JM. Organometallics 2013; 32: 5190
  • 14 Armstrong DR. Baillie SE. Blair VL. Chabloz NG. Diez J. Garcia-Alvarez J. Kennedy AR. Robertson SD. Hevia E. Chem. Sci. 2013; 4: 4259
  • 15 Naktode K. Anga S. Kottalanka RK. Nayek HP. Panda TK. J. Coord. Chem. 2014; 67: 236
  • 16 Fliedel C. Vila-Viçosa D. Calhorda MJ. Dagorne S. Avilés T. ChemCatChem 2014; 6: 1357
  • 17 Fliedel C. Mameri S. Dagorne S. Avilés T. Appl. Organomet. Chem. 2014; 28: 504
  • 18 Collins LR. Moffat LA. Mahon MF. Jones MD. Whittlesey MK. Polyhedron 2016; 103: 121
  • 19 Zheng X.-X. Zhang C. Wang Z.-X. J. Organomet. Chem. 2015; 783: 105
  • 20 Xu S. Everett WC. Ellern A. Windus TL. Sadow A. Dalton Trans. 2014; 14368
  • 21 Specklin D. Fliedel C. Gourlaouen C. Bruyere J.-C. Avilés T. Boudon C. Ruhlmann L. Dagorne S. Chem. Eur. J. 2017; 23: 5509
  • 22 Specklin D. Hild F. Fliedel C. Gourlaouen C. Veiros LF. Dagorne S. Chem. Eur. J. 2017; 23: 15908
  • 23 Oestreich M. Hermeke J. Mohr J. Chem. Soc. Rev. 2015; 44: 2202
  • 24 Wiegand A.-K. Rit A. Okuda J. Coord. Chem. Rev. 2016; 314: 71
  • 25 Rit A. Spaniol TP. Maron L. Okuda J. Angew. Chem. Int. Ed. 2013; 52: 4664
  • 26 Rit A. Wiegand A.-K. Spaniol TP. Okuda J. Eur. J. Inorg. Chem. 2018; 1114
  • 27 Rit A. Spaniol TP. Okuda J. Chem. Asian J. 2014; 9: 612
  • 28 Jochmann P. Stephan DW. Angew. Chem. Int. Ed. 2013; 52: 9831
  • 29 Rit A. Spaniol TP. Maron L. Okuda J. Organometallics 2014; 33: 2039
  • 30 Lummis PA. Momeni MR. Lui MW. McDonald R. Ferguson MJ. Miskolzie M. Brown A. Rivard E. Angew. Chem. Int. Ed. 2014; 53: 9347
  • 31 Roberts AJ. Clegg W. Kennedy AR. Probert MR. Robertson SD. Hevia E. Dalton Trans. 2015; 44: 8169
  • 32 Rit A. Zannardi A. Spaniol TP. Maron L. Okuda J. Angew. Chem. Int. Ed. 2014; 53: 13273
  • 33 Jochmann P. Stephan DW. Chem. Eur. J. 2014; 50: 8370
  • 34 Baishya A. Barman MK. Peddarao T. Nembenna S. J. Organomet. Chem. 2014; 769: 112
  • 35 Al-Rafia SM. I. Lummis PA. Swarnakar AK. Deutsch KC. Ferguson MJ. McDonald R. Rivard E. Aust. J. Chem. 2013; 66: 1235
  • 36 Jacquet O. Frogneux X. Das Neves Gomes C. Cantat T. Chem. Sci. 2013; 4: 2127
  • 37 Singh AP. Samuel PP. Roesky HW. Schwarzer MC. Frenking G. Sidhu NS. Dittrich B. J. Am. Chem. Soc. 2013; 135: 7324
  • 38 Bose SK. Fucke K. Liu L. Steel PG. Marder TB. Angew. Chem. Int. Ed. 2014; 53: 1799
  • 39 Bose SK. Marder TB. Org. Lett. 2014; 16: 4562
  • 40 Lemmerz LE. Spaniol TP. Okuda J. Z. Anorg. Allg. Chem. 2016; 642: 1269
  • 41 Lampland NL. Ellern A. Sadow AD. Inorg. Chim. Acta 2014; 422: 134
  • 42 Jochmann P. Stephan DW. Organometallics 2013; 32: 7503
  • 43 Mazzacano TJ. Bagherzadeh S. Mankad NP. Organometallics 2013; 32: 3986