Subscribe to RSS
DOI: 10.1055/s-0037-1609759
Simple Photo-Induced Trifluoromethylation of Aromatic Rings
This work was supported by a Grant-in-Aid for Scientific Research (B) (No. 16H05077) from JSPS, and a grant under Basis for Supporting Innovative Drug Discovering and Life Science Research (BINDS) from AMED.Publication History
Received: 28 March 2018
Accepted after revision: 23 April 2018
Publication Date:
26 June 2018 (online)
Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis
Abstract
The trifluoromethylation of various aromatic compounds with Umemoto reagent II (2,8-difluoro-5-(trifluoromethyl)-5H-dibenzo[b,d]thiophen-5-ium triflate) proceeded in moderate to good yields under simple photo-irradiation conditions without any catalyst, additive, or activator. UV-Vis and NMR spectral analyses indicated that pre-formation of an electron donor-acceptor complex between the trifluoromethylating reagent and the substrate, as proposed in previous studies, is not essential for generation of the trifluoromethyl radical. Instead, the radical appears to be formed by simple photo-activation of the Umemoto reagent.
Key words
trifluoromethylation - radical - photo-irradiation - Umemoto reagent - aromatic substitutionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609759.
- Supporting Information
-
References
- 1a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. 2nd ed. Wiley-VCH; Weinheim: 2013
- 1b Gouverneur V. Müller K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Imperial College Press; London: 2012
- 1c Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Oxford: 2009
- 2a Jeschke P. ChemBioChem 2004; 5: 570
- 2b Böhm H.-J. Banner D. Bendels S. Kansy M. Kuhn B. Müller K. Obst-Sander U. Stahl M. ChemBioChem 2004; 5: 637
- 2c Bégué J.-P. Bonnet-Delpon D. J. Fluorine Chem. 2006; 127: 992
- 2d Kirk KL. J. Fluorine Chem. 2006; 127: 1013
- 2e Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 2f Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 2g O’Hagan D. J. Fluorine Chem. 2010; 131: 1071
- 3a Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
- 3b Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
- 3c Liang T. Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 3d Merino E. Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 3e Chu L. Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
- 3f Egami H. Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
- 3g Charpentier J. Früh N. Togni A. Chem. Rev. 2015; 115: 650
- 3h Liu X. Xu C. Wang M. Liu Q. Chem. Rev. 2015; 115: 683
- 3i Alonso C. de Marigorta EM. Rubiales G. Palacios F. Chem. Rev. 2015; 115: 1847
- 4 Eisenberger P. Gischig S. Togni A. Chem. Eur. J. 2006; 12: 2579
- 5a Umemoto T. Ishihara S. Tetrahedron Lett. 1990; 31: 3579
- 5b Umemoto T. Zhang B. Zhu T. Zhu X. Zhang P. Hu S. Li Y. J. Org. Chem. 2017; 82: 7708
- 6 Langlois BR. Laurent E. Roidot N. Tetrahedron Lett. 1991; 32: 7525
- 7a Yagupolskii LM. Kondratenko NY. Timofeeva GM. Zh. Org. Khim. 1984; 20: 115
- 7b Ruppert I. Schlich K. Volbach W. Tetrahedron Lett. 1984; 25: 2195
- 7c Noritake S. Shibata N. Nakamura S. Toru T. Shiro M. Eur. J. Org. Chem. 2008; 3465
- 7d Matsnev A. Noritake S. Nomura Y. Tokunaga E. Nakamura S. Shibata N. Angew. Chem. Int. Ed. 2010; 49: 572
- 7e Dubinina GG. Furutachi H. Vicic DA. J. Am. Chem. Soc. 2008; 130: 8600
- 7f Morimoto H. Tsubogo T. Litvinas ND. Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
- 7g Tomashenko OA. Escudero-Adán EC. Belmonte MM. Grushin VV. Angew. Chem. Int. Ed. 2011; 50: 7655
- 7h Fujiwara Y. Dixon JA. O’Hara F. Funder ED. Dixon DD. Rodriguez RA. Baxter RD. Herlé B. Sach N. Collins MR. Ishihara Y. Baran PS. Nature (London) 2012; 492: 95
- 8a Huang X. Groves JT. ACS Catal. 2016; 6: 751
- 8b Gensh T. Hopkinson MN. Glorious F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 8c Santiago JV. Machado AH. L. Beilstein J. Org. Chem. 2016; 12: 882
- 8d Zhu R.-Y. Farmer ME. Chen Y.-Q. Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
- 8e Chu JC. K. Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 8f Leitch JA. Frost CG. Chem. Soc. Rev. 2017; 46: 7145
- 8g He J. Wasa M. Chan KS. L. Shao Q. Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 8h Murakami K. Yamada S. Kaneda T. Itami K. Chem. Rev. 2017; 117: 9302
- 9a Wang X. Truesdale L. Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3648
- 9b Ye Y. Ball ND. Kampf JW. Sanford MS. J. Am. Chem. Soc. 2010; 132: 14682
- 9c Zhang X.-G. Dai HX. Wasa M. Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 11948
- 9d Chu L. Qing F.-L. J. Am. Chem. Soc. 2012; 134: 1298
- 9e Zhang L.-S. Chen K. Chen G. Li B.-J. Luo S. Guo Q.-Y. Wei J.-B. Shi Z.-J. Org. Lett. 2013; 15: 10
- 10a Kino T. Nagase Y. Ohtsuka Y. Yamamoto K. Uraguchi D. Tokuhisa K. Yamakawa T. J. Fluorine Chem. 2010; 131: 98
- 10b Ye Y. Lee SH. Sanford MS. Org. Lett. 2011; 13: 5464
- 10c Ji Y. Brueckl T. Baxter RD. Fujiwara Y. Seiple IB. Su S. Blackmond DG. Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
- 10d Mejia E. Togni A. ACS Catal. 2012; 2: 521
- 10e Shi G. Shao C. Pan S. Yu J. Zhang Y. Org. Lett. 2014; 17: 38
- 10f Wu M. Ji X. Dai W. Cao S. J. Org. Chem. 2014; 79: 8984
- 10g Cheng Y. Yuan X. Ma J. Yu S. Chem. Eur. J. 2015; 21: 8355
- 10h Hu L. Chen X. Gui Q. Tan Z. Zhu G. Chem. Commun. 2016; 52: 6845
- 10i Kuninobu Y. Nishi M. Kanai M. Org. Biomol. Chem. 2016; 14: 8092
- 10j Xu J. Shen J. Chai K. Shen C. Zhang P. Org. Lett. 2017; 19: 5661
- 10k Zhang J. Yang Y. Fang J. Deng G.-J. Gong H. Chem. Asian J. 2017; 12: 2524
- 11a Koike T. Akita M. Acc. Chem. Res. 2016; 49: 1937
- 11b Pan X. Xia H. Wu J. Org. Chem. Front. 2016; 3: 1163
- 12a Nagib DA. MacMillan DW. C. Nature (London) 2011; 480: 224
- 12b Iqbal N. Choi S. Ko E. Cho EJ. Tetrahedron Lett. 2012; 53: 2005
- 12c Cui L. Matsusaki Y. Tada N. Miura T. Uno B. Itoh A. Adv. Synth. Catal. 2013; 355: 2203
- 12d Xie J. Yuan X. Abdukader A. Zhu C. Ma J. Org. Lett. 2014; 16: 1768
- 12e Beatty JW. Douglas JJ. Cole KP. Stephenson CR. J. Nat. Commun. 2015; 6: 7919
- 12f Beatty JW. Douglas JJ. Miller R. McAtee RC. Cole KP. Stephenson CR. J. Chem 2016; 1: 456
- 12g Lin J. Kan J. Huang S. Su W. Li Y. Nat. Commun. 2017; 8: 14353
- 12h Gao G.-L. Yang C. Xia W. Chem. Commun. 2017; 53: 1041
- 13a Li L. Mu X. Liu W. Wang Y. Mi Z. Li C.-J. J. Am. Chem. Soc. 2016; 138: 5809
- 13b Liu P. Liu W. Li C.-J. J. Am. Chem. Soc. 2017; 139: 14315
- 14a Shimizu R. Egami H. Nagi T. Chae J. Hamashima Y. Sodeoka M. Tetrahedron Lett. 2010; 51: 5947
- 14b Shimizu R. Egami H. Hamashima Y. Sodeoka M. Angew. Chem. Int. Ed. 2012; 51: 4577
- 14c Egami H. Ide T. Fujita M. Tojo T. Hamashima Y. Sodeoka M. Chem. Eur. J. 2014; 20: 12061
- 14d Egami H. Asada J. Sato K. Hashizume D. Kawato Y. Hamashima Y. J. Am. Chem. Soc. 2015; 137: 10132
- 14e Egami H. Niwa T. Sato H. Hotta R. Rouno T. Kawato Y. Hamashima Y. J. Am. Chem. Soc. 2018; 140: 2785
- 15a Egami H. Ide T. Kawato Y. Hamashima Y. Chem. Commun. 2015; 51: 16675
- 15b Ide T. Masuda S. Kawato Y. Egami H. Hamahsima Y. Org. Lett. 2017; 19: 4452
- 15c Egami H. Masuda S. Kawato Y. Hamashima Y. Org. Lett. 2018; 20: 1367
- 16 Use of other bases, such as Na2CO3 and Na3PO4, afforded similar results to the reaction using K2CO3.
- 17 Stanek K. Koller R. Togni A. J. Org. Chem. 2008; 73: 7678
- 18 The reaction of 3-methylbenzothiophene afforded the 2-trifluoromethylated product in only 13% NMR yield, and benzofuran could not be trifluoromethylated under these reaction conditions.
- 19 See Supporting Information.
- 20a Spell ML. Deveaux K. Bresnahan CG. Bernard BB. Sheffield W. Kumar R. Ragains JR. Angew. Chem. Int. Ed. 2016; 55: 6515
- 20b Liu Y.-Y. Yu X.-Y. Chen J.-R. Qiao M.-M. Qi X. Shi D.-Q. Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 9527
- 21 Polar solvents having a lone pair, such as DMSO, may interact with 6 to activate it during the reaction, see ref. 10g.
- 22 Kremer S. Pantenburg I. Tyrra W. Z. Anorg. Allg. Chem. 2014; 640: 2458
For selected reviews on trifluoromethylations, see:
For other trifluoromethylating reagents, see:
For recent selected reviews on C–H functionalizations, see:
For selected reports, see:
For selected reports, see:
For recent selected reviews, see:
For selected reports on aromatic C–H bond trifluoromethylation, see: