Synthesis 2018; 50(23): 4611-4616
DOI: 10.1055/s-0037-1609554
paper
© Georg Thieme Verlag Stuttgart · New York

DDQ-Mediated Oxidation of Allylarenes: Expedient Access to Cinnamaldehyde-Containing Phenylpropanoids

School of Life Sciences, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jts2015@ahau.edu.cn   Email: ypcaiah@163.com
,
Qingqing Zhang
School of Life Sciences, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jts2015@ahau.edu.cn   Email: ypcaiah@163.com
,
Guohui Li
School of Life Sciences, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jts2015@ahau.edu.cn   Email: ypcaiah@163.com
,
Xi Cheng
School of Life Sciences, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jts2015@ahau.edu.cn   Email: ypcaiah@163.com
,
Yongping Cai*
School of Life Sciences, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jts2015@ahau.edu.cn   Email: ypcaiah@163.com
› Author Affiliations
Financial support from National Natural Science Foundation of China (No. 21702002 and 31640068), and Anhui Provincial Natural Science Foundation (1808085QC79) is gratefully acknowledged.
Further Information

Publication History

Received: 12 May 2018

Accepted after revision: 13 June 2018

Publication Date:
24 July 2018 (online)


Abstract

Phenylpropanoid natural products containing a cinnamaldehyde motif were easily synthesized from allylarenes mediated by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) oxidation. Representative examples described herein are five types of 4-hydroxycinnamaldehyde derivatives from monolignols biosynthesis, Boropinal C, and 7-methoxywutaifuranal from plant extracts. Especially, simple synthesis of 7-methoxywutaifuranal was exploited through selective mono-oxidation and subsequent isomerization–ring-closing-metathesis strategy.

Supporting Information

 
  • References

  • 1 Barros J. Serrani-Yarce JC. Chen F. Baxter D. Venables BJ. Dixon RA. Nat. Plants 2016; 2: 16050
  • 2 Wang Y. Gao L. Wang Z. Liu Y. Sun M. Yang DQ. Wei CL. Shan Y. Xia T. Sci. Hortic. (Amsterdam, Neth.) 2012; 133: 72
  • 3 Vogt T. Mol. Plant 2010; 3: 2
  • 4 Yu O. Jez JM. Plant J. 2008; 54: 750
  • 5 Vanholme R. Demedts B. Morreel K. Ralph J. Boerjan W. Plant Physiol. 2010; 153: 895
  • 6 Cai Y. Li G. Nie J. Lin Y. Nie F. Zhang J. Xu Y. Sci. Hortic. (Amsterdam, Neth.) 2010; 125: 374
  • 7 Lv F. Ralph J. J. Agric. Food Chem. 1998; 46: 1794
  • 8 Zhu Y. Mohammadi A. Ralph J. Bioenergy Res. 2012; 5: 407
  • 9 Wink M. Phytochemistry 2003; 64: 3
  • 10 Li X. Weng J.-K. Chapple C. Plant J. 2008; 54: 569
  • 11 Tanaka Y. Sasaki N. Ohmiya A. Plant J. 2008; 54: 733
  • 12 Brunetti C. Guidi L. Sebastiani F. Tattini M. Environ. Exp. Bot. 2015; 119: 54
  • 13 Wang Y. Xu Y. Gao L. Yu O. Wang X. He X. Liu Y. Xia T. BMC Plant Biol. 2014; 14: 347
  • 14 Pan J. Yuan C. Lin C. Jia Z. Zheng R. Pharmazie 2003; 58: 767
  • 15 Wang Y. Li W. Ning J. Hua R. Wu H. J. Food Drug Anal. 2015; 23: 93
  • 16 Ito C. Itoigawa M. Otsuka T. Tokuda H. Nishino H. Furukawa H. J. Nat. Prod. 2000; 63: 1344
  • 17 Huang H.-Y. Ishikawa T. Peng C.-F. Tsai I.-L. Chen I.-S. J. Nat. Prod. 2008; 71: 1146
  • 18 Quideau S. Ralph J. J. Agric. Food Chem. 1992; 40: 1108
  • 19 Terashima N. Ralph SA. Landucci LL. Holzforschung 1995; 50: 151
  • 20 Daubresse N. Francesch C. Mhamdi F. Rolando C. Synthesis 1994; 369
  • 21 Chen F. Kota P. Blount JW. Dixon RA. Phytochemistry 2001; 58: 1035
  • 22 Schmidt B. Wolf F. J. Org. Chem. 2017; 82: 4386
  • 23 IIiefski T. Li S. Lundquist K. Acta Chem. Scand. 1998; 52: 1177
  • 24 IIiefski T. Li S. Lundquist K. Tetrahedron Lett. 1998; 39: 2413
  • 25 van Otterlo WA. L. Morgans GL. Madeley LG. Kuzvidza S. Moleele SS. Thornton N. de Koning CB. Tetrahedron 2005; 61: 7746
  • 26 Charan Raja MR. Velappan AB. Chellappan D. Debnath J. Mahapatra SK. Eur. J. Med. Chem. 2017; 139: 503
  • 27 Guzmán D. Ramis X. Fernández-Francos X. Flor SD. Serra A. Eur. Polym. J. 2017; 93: 530