Semin Liver Dis 2016; 36(04): 331-339
DOI: 10.1055/s-0036-1593882
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Bidirectional Communication between Liver and Gut during Alcoholic Liver Disease

Peter Stärkel
1   St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
,
Bernd Schnabl
2   Department of Medicine, University of California San Diego, La Jolla, California
3   Department of Medicine, VA San Diego Healthcare System, San Diego, California
› Author Affiliations
Further Information

Publication History

Publication Date:
20 December 2016 (online)

Abstract

Alcoholic liver disease is a major medical burden. Alcohol abuse is the cause for end-stage liver disease in approximately 50% of all patients with cirrhosis. Chronic alcohol consumption is associated with changes in the composition of the intestinal microbiota and gut barrier dysfunction. The portal vein is the major communication route between the intestine and the liver. Increased intestinal permeability allows microbial components, bacteria, and metabolites to translocate to the liver. The liver communicates with the intestine via mediators in the systemic circulation and the biliary system. In this review, the authors describe the changes that occur in the intestinal microbiota with chronic alcohol consumption. They further review the bilateral communication between the liver and the gut, and discuss how this interaction affects the progression of alcoholic liver disease.

 
  • References

  • 1 Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 2009; 373 (9682) 2223-2233
  • 2 European Association for the Study of Liver. EASL clinical practical guidelines: management of alcoholic liver disease. J Hepatol 2012; 57 (2) 399-420
  • 3 Singal AK, Anand BS. Recent trends in the epidemiology of alcoholic liver disease. Clin Liver Dis 2013; 2: 53-56
  • 4 Rehm J, Samokhvalov AV, Shield KD. Global burden of alcoholic liver diseases. J Hepatol 2013; 59 (1) 160-168
  • 5 Dugum M, McCullough A. Diagnosis and management of alcoholic liver disease. J Clin Transl Hepatol 2015; 3 (2) 109-116
  • 6 Mathurin P, Bataller R. Trends in the management and burden of alcoholic liver disease. J Hepatol 2015; 62 (1) S38-S46
  • 7 Mandrekar P, Ambade A. Immunity and inflammatory signaling in alcoholic liver disease. Hepatol Int 2014; 8 (Suppl. 02) 439-446
  • 8 Szabo G, Petrasek J, Bala S. Innate immunity and alcoholic liver disease. Dig Dis 2012; 30 (Suppl. 01) 55-60
  • 9 Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164 (3) 337-340
  • 10 Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 2008; 105 (39) 15064-15069
  • 11 Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res 2015; 37 (2) 223-236
  • 12 Bull-Otterson L, Feng W, Kirpich I , et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 2013; 8 (1) e53028
  • 13 Yan AW, Fouts DE, Brandl J , et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011; 53 (1) 96-105
  • 14 Bode JC, Bode C, Heidelbach R, Dürr HK, Martini GA. Jejunal microflora in patients with chronic alcohol abuse. Hepatogastroenterology 1984; 31 (1) 30-34
  • 15 Leclercq S, Matamoros S, Cani PD , et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci U S A 2014; 111 (42) E4485-E4493
  • 16 Mutlu EA, Gillevet PM, Rangwala H , et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol 2012; 302 (9) G966-G978
  • 17 Chen Y, Yang F, Lu H , et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011; 54 (2) 562-572
  • 18 de Timary P, Leclercq S, Stärkel P, Delzenne N. A dysbiotic subpopulation of alcohol-dependent subjects. Gut Microbes 2015; 6 (6) 388-391
  • 19 Leclercq S, Cani PD, Neyrinck AM , et al. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain Behav Immun 2012; 26 (6) 911-918
  • 20 Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 2012; 12 (7) 503-516
  • 21 Worthington BS, Meserole L, Syrotuck JA. Effect of daily ethanol ingestion on intestinal permeability to macromolecules. Am J Dig Dis 1978; 23 (1) 23-32
  • 22 Bjarnason I, Peters TJ, Wise RJ. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet 1984; 1 (8370) 179-182
  • 23 Draper LR, Gyure LA, Hall JG, Robertson D. Effect of alcohol on the integrity of the intestinal epithelium. Gut 1983; 24 (5) 399-404
  • 24 Lavö B, Colombel JF, Knutsson L, Hällgren R. Acute exposure of small intestine to ethanol induces mucosal leakage and prostaglandin E2 synthesis. Gastroenterology 1992; 102 (2) 468-473
  • 25 Bode C, Vollmer E, Hug J, Bode JC. Increased permeability of the gut to polyethylene glycol and dextran in rats fed alcohol. Ann N Y Acad Sci 1991; 625: 837-840
  • 26 Parlesak A, Schäfer C, Schütz T, Bode JC, Bode C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J Hepatol 2000; 32 (5) 742-747
  • 27 Wang Y, Tong J, Chang B, Wang B, Zhang D, Wang B. Effects of alcohol on intestinal epithelial barrier permeability and expression of tight junction-associated proteins. Mol Med Rep 2014; 9 (6) 2352-2356
  • 28 Elamin E, Jonkers D, Juuti-Uusitalo K , et al. Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model. PLoS One 2012; 7 (4) e35008
  • 29 Dunagan M, Chaudhry K, Samak G, Rao RK. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2012; 303 (12) G1356-G1364
  • 30 Rao RK. Acetaldehyde-induced barrier disruption and paracellular permeability in Caco-2 cell monolayer. Methods Mol Biol 2008; 447: 171-183
  • 31 Zhong W, Zhao Y, McClain CJ, Kang YJ, Zhou Z. Inactivation of hepatocyte nuclear factor-4alpha mediates alcohol-induced downregulation of intestinal tight junction proteins. Am J Physiol Gastrointest Liver Physiol 2010; 299 (3) G643-G651
  • 32 Bachem MG, Riess U, Gressner AM. Liver fat storing cell proliferation is stimulated by epidermal growth factor/transforming growth factor alpha and inhibited by transforming growth factor beta. Biochem Biophys Res Commun 1989; 162 (2) 708-714
  • 33 Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci (Landmark Ed) 2009; 14: 2765-2778
  • 34 Al-Sadi R, Ye D, Boivin M , et al. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 2014; 9 (3) e85345
  • 35 Chen P, Stärkel P, Turner JR, Ho SB, Schnabl B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 2015; 61 (3) 883-894
  • 36 Ma TY, Nguyen D, Bui V, Nguyen H, Hoa N. Ethanol modulation of intestinal epithelial tight junction barrier. Am J Physiol 1999; 276 (4 Pt 1) G965-G974
  • 37 Banan A, Fields JZ, Decker H, Zhang Y, Keshavarzian A. Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction. J Pharmacol Exp Ther 2000; 294 (3) 997-1008
  • 38 Tang Y, Forsyth CB, Farhadi A , et al. Nitric oxide-mediated intestinal injury is required for alcohol-induced gut leakiness and liver damage. Alcohol Clin Exp Res 2009; 33 (7) 1220-1230
  • 39 Swanson G, Forsyth CB, Tang Y , et al. Role of intestinal circadian genes in alcohol-induced gut leakiness. Alcohol Clin Exp Res 2011; 35 (7) 1305-1314
  • 40 Tang Y, Banan A, Forsyth CB , et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32 (2) 355-364
  • 41 Wells JM, Rossi O, Meijerink M, van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4607-4614
  • 42 Forsyth CB, Tang Y, Shaikh M, Zhang L, Keshavarzian A. Role of snail activation in alcohol-induced iNOS-mediated disruption of intestinal epithelial cell permeability. Alcohol Clin Exp Res 2011; 35 (9) 1635-1643
  • 43 Elamin E, Masclee A, Troost F, Dekker J, Jonkers D. Activation of the epithelial-to-mesenchymal transition factor snail mediates acetaldehyde-induced intestinal epithelial barrier disruption. Alcohol Clin Exp Res 2014; 38 (2) 344-353
  • 44 Elamin E, Masclee A, Troost F , et al. Ethanol impairs intestinal barrier function in humans through mitogen activated protein kinase signaling: a combined in vivo and in vitro approach. PLoS One 2014; 9 (9) e107421
  • 45 Samak G, Aggarwal S, Rao RK. ERK is involved in EGF-mediated protection of tight junctions, but not adherens junctions, in acetaldehyde-treated Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol 2011; 301 (1) G50-G59
  • 46 Suzuki T, Seth A, Rao R. Role of phospholipase Cgamma-induced activation of protein kinase Cepsilon (PKCepsilon) and PKCbetaI in epidermal growth factor-mediated protection of tight junctions from acetaldehyde in Caco-2 cell monolayers. J Biol Chem 2008; 283 (6) 3574-3583
  • 47 Atkinson KJ, Rao RK. Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions. Am J Physiol Gastrointest Liver Physiol 2001; 280 (6) G1280-G1288
  • 48 Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 2012; 16 (5) 559-564
  • 49 Wikoff WR, Anfora AT, Liu J , et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009; 106 (10) 3698-3703
  • 50 Chen P, Miyamoto Y, Mazagova M, Lee KC, Eckmann L, Schnabl B. Microbiota and Alcoholic Liver Disease. Alcohol Clin Exp Res 2016; 40 (8) 1791-1792
  • 51 Mazagova M, Wang L, Anfora AT , et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J 2015; 29 (3) 1043-1055
  • 52 Tabibian JH, O'Hara SP, Trussoni CE , et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology 2016; 63 (1) 185-196
  • 53 Chen P, Miyamoto Y, Mazagova M, Lee KC, Eckmann L, Schnabl B. Microbiota protects mice against acute alcohol-induced liver injury. Alcohol Clin Exp Res 2015; 39 (12) 2313-2323
  • 54 Harada S, Takebayashi T, Kurihara A , et al. Metabolomic profiling reveals novel biomarkers of alcohol intake and alcohol-induced liver injury in community-dwelling men. Environ Health Prev Med 2016; 21 (1) 18-26
  • 55 Jaremek M, Yu Z, Mangino M , et al. Alcohol-induced metabolomic differences in humans. Transl Psychiatry 2013; 3: e276
  • 56 Xie G, Zhong W, Zheng X , et al. Chronic ethanol consumption alters mammalian gastrointestinal content metabolites. J Proteome Res 2013; 12 (7) 3297-3306
  • 57 Zhang A, Yan G, Zhou X , et al. High resolution metabolomics technology reveals widespread pathway changes of alcoholic liver disease. Mol Biosyst 2016; 12 (1) 262-273
  • 58 Cresci GA, Bush K, Nagy LE. Tributyrin supplementation protects mice from acute ethanol-induced gut injury. Alcohol Clin Exp Res 2014; 38 (6) 1489-1501
  • 59 Chen P, Torralba M, Tan J , et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 2015; 148 (1) 203-214 .e16
  • 60 Shi X, Wei X, Yin X , et al. Hepatic and fecal metabolomic analysis of the effects of Lactobacillus rhamnosus GG on alcoholic fatty liver disease in mice. J Proteome Res 2015; 14 (2) 1174-1182
  • 61 Wolk A, Furuheim M, Vessby B. Fatty acid composition of adipose tissue and serum lipids are valid biological markers of dairy fat intake in men. J Nutr 2001; 131 (3) 828-833
  • 62 Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489 (7415) 242-249
  • 63 Dumas ME, Barton RH, Toye A , et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 2006; 103 (33) 12511-12516
  • 64 Fernando H, Bhopale KK, Kondraganti S, Kaphalia BS, Shakeel Ansari GA. Lipidomic changes in rat liver after long-term exposure to ethanol. Toxicol Appl Pharmacol 2011; 255 (2) 127-137
  • 65 Fernando H, Kondraganti S, Bhopale KK , et al. 1H and 31P NMR lipidome of ethanol-induced fatty liver. Alcohol Clin Exp Res 2010; 34 (11) 1937-1947
  • 66 Bode C, Bode JC. Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol 2003; 17 (4) 575-592
  • 67 Levitt MD, Doizaki W, Levine AS. Hypothesis: metabolic activity of the colonic bacteria influences organ injury from ethanol. Hepatology 1982; 2 (5) 598-600
  • 68 Ferrier L, Bérard F, Debrauwer L , et al. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol 2006; 168 (4) 1148-1154
  • 69 Seitz HK, Simanowski UA, Garzon FT , et al. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 1990; 98 (2) 406-413
  • 70 Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol 2012; 590 (3) 447-458
  • 71 Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014; 146 (6) 1513-1524
  • 72 Hartmann P, Seebauer CT, Schnabl B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol Clin Exp Res 2015; 39 (5) 763-775
  • 73 Llorente C, Schnabl B. The gut microbiota and liver disease. Cell Mol Gastroenterol Hepatol 2015; 1 (3) 275-284
  • 74 Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol 1987; 4 (1) 8-14
  • 75 Fujimoto M, Uemura M, Nakatani Y , et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: relation to severity of liver disturbance. Alcohol Clin Exp Res 2000; 24 (4) 48S-54S
  • 76 Nanji AA, Khettry U, Sadrzadeh SM, Yamanaka T. Severity of liver injury in experimental alcoholic liver disease. Correlation with plasma endotoxin, prostaglandin E2, leukotriene B4, and thromboxane B2. Am J Pathol 1993; 142 (2) 367-373
  • 77 Achur RN, Freeman WM, Vrana KE. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J Neuroimmune Pharmacol 2010; 5 (1) 83-91
  • 78 Wang L, Fouts DE, Stärkel P , et al. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation. Cell Host Microbe 2016; 19 (2) 227-239
  • 79 Grewal RK, Mahmood A. Ethanol effects on mucin glycosylation of mucins in rat intestine. Ann Gastroenterol 2009; 22: 178-183
  • 80 Hartmann P, Chen P, Wang HJ , et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology 2013; 58 (1) 108-119
  • 81 Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 2014; 11 (1) 55-67
  • 82 Xie G, Zhong W, Li H , et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB J 2013; 27 (9) 3583-3593
  • 83 Swann JR, Want EJ, Geier FM , et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4523-4530
  • 84 Alm R, Carlson J, Eriksson S. Fasting serum bile acids in liver disease. A comparison with histological features. Scand J Gastroenterol 1982; 17 (2) 213-218
  • 85 Axelson M, Mörk B, Sjövall J. Ethanol has an acute effect on bile acid biosynthesis in man. FEBS Lett 1991; 281 (1-2) 155-159
  • 86 Wu W, Zhu B, Peng X, Zhou M, Jia D, Gu J. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease. Biochem Biophys Res Commun 2014; 443 (1) 68-73
  • 87 Wu WB, Chen YY, Zhu B, Peng XM, Zhang SW, Zhou ML. Excessive bile acid activated NF-kappa B and promoted the development of alcoholic steatohepatitis in farnesoid X receptor deficient mice. Biochimie 2015; 115: 86-92
  • 88 Sung JY, Shaffer EA, Costerton JW. Antibacterial activity of bile salts against common biliary pathogens. Effects of hydrophobicity of the molecule and in the presence of phospholipids. Dig Dis Sci 1993; 38 (11) 2104-2112
  • 89 Inagaki T, Moschetta A, Lee YK , et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006; 103 (10) 3920-3925
  • 90 Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 2010; 10 (3) 159-169
  • 91 Moro-Sibilot L, Blanc P, Taillardet M , et al. Mouse and human liver contain immunoglobulin a-secreting cells originating from Peyer's patches and directed against intestinal antigens. Gastroenterology 2016; 151 (2) 311-323
  • 92 van de Wiel A, Schuurman HJ, Kater L. Alcoholic liver disease: an IgA-associated disorder. Scand J Gastroenterol 1987; 22 (9) 1025-1030
  • 93 Harada K, Ohba K, Ozaki S , et al. Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 2004; 40 (4) 925-932
  • 94 Siler SQ, Neese RA, Hellerstein MK. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am J Clin Nutr 1999; 70 (5) 928-936
  • 95 Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015; 12 (4) 231-242
  • 96 McClain CJ, Cohen DA. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology 1989; 9 (3) 349-351
  • 97 Leclercq S, De Saeger C, Delzenne N, de Timary P, Stärkel P. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry 2014; 76 (9) 725-733