Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(10): 1319-1323
DOI: 10.1055/s-0036-1591756
DOI: 10.1055/s-0036-1591756
letter
High-Pressure Au-Catalyzed Cycloisomerization of Internal 1,6- and 1,7-Enynes
Financial support from the Polish National Science Centre (Grant decision DEC-2013/11/D/ST5/02979) and the Polish Ministry of Science and Higher Education (stipend for W.C.) is gratefully acknowledged.Further Information
Publication History
Received: 28 October 2017
Accepted after revision: 02 January 2018
Publication Date:
02 February 2018 (online)
![](https://www.thieme-connect.de/media/synlett/201810/lookinside/thumbnails/st-2017-b0798-l_10-1055_s-0036-1591756-1.jpg)
Published as part of the Special Section 9th EuCheMS Organic Division Young Investigator Workshop
Abstract
The influence of high pressure (in the kbar region) on the outcome of the Au(I)-catalyzed cycloisomerization of 1,6- and 1,7-enynes is presented. The positive effect of pressure is particularly marked for reactions involving sterically biased substrates (e.g. 1,6-enynes bearing atert-butyl substituent at the alkyne moiety) and the challenging cyclization of internal 1,7-enynes.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591756.
- Supporting Information
-
References and Notes
- 1a Fukuda Y. Utimoto K. J. Org. Chem. 1991; 56: 3729
- 1b Fukuda Y. Utimoto K. Synthesis 1991; 975
- 1c Uchimoto K. Fukuda Y. Utimoto K. Nozaki H. Heterocycles 1987; 25: 297
- 2 Teles JH. Brode S. Chabanas M. Angew. Chem. Int. Ed. 1998; 37: 1415
- 3 Gasparrini F. Giovannoli M. Misiti D. Natile G. Palmieri G. Maresca L. J. Am. Chem. Soc. 1993; 115: 4401
- 4a Hashmi AS. K. Schwarz L. Choi J.-H. Frost TM. Angew. Chem. Int. Ed. 2000; 39: 2285
- 4b Hashmi AS. K. Frost TM. Bats JW. J. Am. Chem. Soc. 2000; 122: 11553
- 5a Nieto-Oberhuber C. Muñoz MP. Buñuel E. Nevado C. Cárdenas DJ. Echavarren AM. Angew. Chem. Int. Ed. 2004; 43: 2402
- 5b Nevado C. Cárdenas DJ. Echavarren AM. Chem.–Eur. J. 2003; 9: 2627
- 6a Mamane V. Gress T. Krause H. Fürstner A. J. Am. Chem. Soc. 2004; 126: 8654
- 6b Mamane V. Hannen P. Fürstner A. Chem.–Eur. J. 2004; 10: 4556
- 6c Fürstner A. Hannen P. Chem. Commun. 2004; 2546
- 7 Kennedy-Smith JJ. Staben ST. Toste FD. J. Am. Chem. Soc. 2004; 126: 4526
- 8a Reetz MT. Sommer K. Eur. J. Org. Chem. 2003; 3485
- 8b Asao N. Nogami T. Lee S. Yamamoto Y. J. Am. Chem. Soc. 2003; 125: 10921
- 8c Mizushima E. Sato K. Hayashi T. Tanaka M. Angew. Chem. Int. Ed. 2002; 41: 4563
- 8d Dankwardt JW. Tetrahedron Lett. 2001; 42: 5809
- 9a Zi W. Toste FD. Chem. Soc. Rev. 2016; 45: 4567
- 9b Asiri AM. Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 4471
- 9c Day DP. Chan PW. H. Adv. Synth. Catal. 2016; 358: 1368
- 9d Pflästerer D. Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 1331
- 9e Dorel R. Echavarren AM. Chem. Rev. 2015; 115: 9028
- 9f Fürstner A. Acc. Chem. Res. 2014; 47: 925
- 9g Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 10a Echavarren AM. Muratore MN. López-Carrillo V. Escribano-Cuesta A. Huguet A. Obradors C. Org. React. (N. Y.) 2017; 92: 1
- 10b Stathakis CI. Gkizis PL. Zografos AL. Nat. Prod. Rep. 2016; 33: 1093
- 10c Obradors C. Echavarren AM. Acc. Chem. Res. 2014; 47: 902
- 10d Fensterbank L. Malacria M. Acc. Chem. Res. 2014; 47: 953
- 10e Toullec PY. Michelet V. In Computational Mechanisms of Au and Pt Catalyzed Reactions . Springer; Berlin, Heidelberg: 2011: 31-80
- 10f Jiménez-Núñez E. Echavarren AM. Chem. Rev. 2008; 108: 3326
- 11 Chaładaj W. Kołodziejczyk A. Domański S. ChemCatChem 2017; 9: 4334
- 12a Hugelshofer CL. Magauer T. Synthesis 2014; 46: 1279
- 12b Matsumoto K. Hamana H. Iida H. Helv. Chim. Acta 2005; 88: 2033
- 12c Jenner G. Tetrahedron 2002; 58: 5185
- 12d Drljaca A. Hubbard CD. van Eldik R. Asano T. Basilevsky MV. le Noble WJ. Chem. Rev. 1998; 98: 2167
- 12e Isaacs NS. Tetrahedron 1991; 47: 8463
- 12f Van Eldik R. Asano T. Le Noble WJ. Chem. Rev. 1989; 89: 549
- 12g Matsumoto K. Sera A. Synthesis 1985; 999
- 12h Matsumoto K. Sera A. Uchida T. Synthesis 1985; 1
- 12i Asano T. Le Noble WJ. Chem. Rev. 1978; 78: 407
- 13 Jenner G. J. Chem. Soc., Faraday Trans. 1 Phys. Chem. Condens. Phases 1985; 81: 2437
- 14 General Procedure for the Gold-Catalyzed Cycloisomerization of Nonterminal Enynes; Enyne (0.3 mmol) was weighted in a 3-mL Teflon ampoule. Then, a solution of PPh3AuNTf2 {or [3,5-(t-Bu)2PhO]3PAuNTf2, prepared in situ from gold chloride complex and Ag NTf2} in CH2Cl2 (ca. 2.5 mL) was added. The ampoule was closed with a Teflon screw cap (with a small hole) fitted with a rubber O-ring. Then, the solvent (CH2Cl2) was introduced through a syringe to fill the ampoule completely (no air bubbles left), which was next tightly closed with a screw (bolt) equipped with a rubber O-ring. The ampoule was then placed in a high pressure chamber filled with petroleum ether and compressed to 6 kbar (or to 10 kbar). The procedure is illustrated in the Supporting Information (Figure S2). After 4 h (or 24 h), the system was decompressed, the reaction mixture was transferred to a flask, concentrated and subjected to chromatography (silica gel ca. 10 g, hexane–EtOAc, 95:5).
- 15 Nieto-Oberhuber C. López S. Muñoz MP. Cárdenas DJ. Buñuel E. Nevado C. Echavarren AM. Angew. Chem. Int. Ed. 2005; 44: 6146
- 16 Miyanohana Y. Chatani N. Org. Lett. 2006; 8: 2155
- 17 Mixture 2b/3b (1:7): Prepared in the reaction of 1d following the general procedure with 2 mol% of [3,5-(t-Bu)2PhO]3PAuNTf2 as the catalyst. The mixture of title compounds was isolated in 66% yield as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 5.14–5.18 (m, 1 H), 3.71 (s, 6 H), 2.94–2.99 (m, 2 H), 2.83 (br s, 2 H), 2.75 (br s, 2 H), 1.65 (s, 3 H), 1.63 (s, 3 H), 1.57 (s, 3 H). Compound 3d: 13C NMR (101 MHz, CDCl3): δ = 172.7, 140.4, 125.7, 124.7, 121.0, 59.2, 52.7, 42.8, 40.5, 35.8, 20.5, 20.3, 18.3. 1H NMR (400 MHz, CDCl3): δ = 6.09 (d, J = 16.1 Hz, 1 H), 5.60 (d, J = 16.0 Hz, 1 H), 5.42–5.46 (m, 1 H), 3.73 (s, 6 H), 3.10 (s, 2 H), 3.07 (s, 2 H), 1.02 (s, 9 H). Compound 2d: 1H NMR (400 MHz, CDCl3): δ = 6.09 (d,J = 16.1 Hz, 1 H), 5.60 (d, J = 16.1 Hz, 1 H), 5.42–5.46 (m, 1 H), 3.73 (s, 6 H), 3.10 (s, 2 H), 3.07 (s, 2 H), 1.02 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 172.6, 143.3, 139.7, 124.0, 120.6, 58.6, 52.8, 40.8, 39.9, 33.1, 31.1, 29.5. IR (CH2Cl2): 2954, 2866 (C–H), 1739 (C=O), 1642 (C=C), 1436, 1362, 1256, 1218, 1201 (C–O), 1073, 971 cm–1. HRMS (ESI): m/z [M + Na+] calcd for C15H22O4Na: 289.1416; found: 289.1417.
- 18 Cabello N. Jiménez-Núñez E. Buñuel E. Cárdenas DJ. Echavarren AM. Eur. J. Org. Chem. 2007; 4217
- 19 For a review, see: Harris RJ. Widenhoefer RA. Chem. Soc. Rev. 2016; 45: 4533
- 20a Fu J. Gu Y. Yuan H. Luo T. Liu S. Lan Y. Gong J. Yang Z. Nat. Commun. 2015; 6: 8617
- 20b Lauterbach T. Higuchi T. Hussong MW. Rudolph M. Rominger F. Mashima K. Hashmi AS. K. Adv. Synth. Catal. 2015; 357: 775
- 20c Stevenson SM. Newcomb ET. Ferreira EM. Chem. Commun. 2014; 50: 5239
- 20d Nösel P. dos Santos Comprido LN. Lauterbach T. Rudolph M. Rominger F. Hashmi AS. K. J. Am. Chem. Soc. 2013; 135: 15662
- 20e Zhang Z. Tang X. Xu Q. Shi M. Chem.–Eur. J. 2013; 19: 10625
- 21 Lee Y.-J. Schrock RR. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 10652
- 22a Kitamura T. Sato Y. Mori M. Adv. Synth. Catal. 2002; 344: 678
- 22b Kitamura T. Sato Y. Mori M. Chem. Commun. 2001; 1258
- 23 Masutomi K. Noguchi K. Tanaka K. J. Am. Chem. Soc. 2014; 136: 7627
- 24 Gryparis C. Efe C. Raptis C. Lykakis IN. Stratakis M. Org. Lett. 2012; 14: 2956
- 25 Compound 7d: Prepared in the reaction of 6d following the general procedure with 0.5 mol% of PPh3AuNTf2 as the catalyst. The title compound was isolated in 61% yield as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 5.09 (s, 1 H), 3.70 (s, 6 H), 2.65 (d, J = 17.1 Hz, 1 H), 2.34–2.42 (m, 1 H), 2.18–2.29 (m, 2 H), 1.68 (s, 3 H), 164 (s, 3 H), 1.62 (d, J = 1.2 Hz, 3 H), 1.51 (dd, J = 13.0, 10.8 Hz, 1 H), 1.02 (d, J = 6.8 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 172.7, 171.4, 137.1, 130.4, 127.7, 125.9, 54.1 52.5, 52.3, 36.1, 32.9, 27.9, 21.5, 21.2, 19.9, 17.5. IR (CH2Cl2): 2954, 2925 (C–H), 1738 (C=O), 1448, 1435, 1373, 1249, 1200 (C–O), 1084, 1038, 974 cm–1. HRMS (ESI): m/z [M + Na+] calcd for C16H24O4Na: 303.1572; found: 303.1570.
- 26 Harrak Y. Simonneau A. Malacria M. Gandon V. Fensterbank L. Chem. Commun. 2010; 46: 865
- 27 Meiß R. Kumar K. Waldmann H. Chem.–Eur. J. 2015; 21: 13526
- 28 Compound 16a: Prepared in the reaction of 15a following the general procedure (10 kbar) with 2 mol% of PPh3AuNTf2 as the catalyst. The title compound was isolated in 65% yield as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 5.23–5.27 (m, 1 H), 3.71 (s, 6 H), 2.55–2.62 (m, 2 H), 2.17 (t, J = 6.4 Hz, 2 H), 1.98–2.06 (m, 2 H), 1.62 (s, 6 H), 1.55 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 172.2, 140.4, 130.8, 125.4, 119.3, 52.8, 52.5, 30.7, 28.1, 24.7, 21.2, 19.8, 17.9. IR (CH2Cl2): 2952, 2917 (C–H), 1737 (C=O), 1435, 1326, 1253, 1216 (C–O), 1086, 1060 cm–1. HRMS (ESI): m/z [M + Na+] calcd for C15H22O4Na: 289.1416; found: 289.1413.
For example, see:
For recent reviews, see:
For recent reviews, see:
For representative reviews, see:
For selected examples, see: