Subscribe to RSS
DOI: 10.1055/s-0036-1590809
Convergent Routes to Pyrroles Exploiting the Unusual Radical Chemistry of Xanthates – An Overview
Publication History
Received: 15 May 2017
Accepted after revision: 06 June 2017
Publication Date:
21 July 2017 (online)
This article is affectionately dedicated to Professor Victor Snieckus on the occasion of his 80th birthday.
Abstract
Convergent routes to a variety of pyrroles involving radical additions of xanthates are described. Emphasis is placed on reactions leading to the formation of 1,4-diketones or 1,4-ketoaldehydes or their synthetic equivalents, which can then be condensed with ammonia or primary amines in a variation of the classical Paal–Knorr synthesis of pyrroles. The modification of pyrroles by direct radical addition is also discussed.
1 Introduction
2 Earlier Routes to Pyrroles
3 The Xanthate Radical Addition–Transfer Process
4 Application to Pyrrole Synthesis
5 Further Variations
6 Direct Modification of Existing Pyrrole Rings
7 Outlook and Perspectives
-
References
- 1 Joule JA. Mills K. Heterocyclic Chemistry . Wiley-VCH; Weinheim: 2010
- 2a Jones A. Bean GP. The Chemistry of Pyrroles 1977
- 2b Jones A. Pyrroles . Wiley; New York: 1990
- 2c Sobenina LN. Mikhaleva AI. Trofimov BA. Russ. Chem. Rev. (Engl. Transl.) 1989; 58: 163
- 2d Estévez V. Villacampa M. Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
- 3 Domagala A. Jarosz T. Lapkowski M. Eur. J. Med. Chem. 2015; 100: 176
- 4a Arikawa Y. Nishida H. Kurasawa O. Hasuoka A. Hirase K. Inatomi N. Hori Y. Matsukawa J. Imanishi A. Kondo M. Tarui N. Hamada T. Takagi T. Takeuchi T. Kajino M. J. Med. Chem. 2012; 55: 4446
- 4b Nishida H. Hasuoka A. Arikawa Y. Kurasawa O. Hirase K. Inatomi N. Hori Y. Sato F. Tarui N. Imanishi A. Kondo M. Takagi T. Kajino M. Bioorg. Med. Chem. 2012; 20: 3925
- 5 Kato S. Shindo K. Kawai H. Odagawa A. Matsuoka M. Mochizuki J. J. Antibiot. 1993; 46: 892
- 6 Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
- 7a Barton DH. R. Zard SZ. J. Chem. Soc., Chem. Commun. 1985; 1098
- 7b Barton DH. R. Kervagoret J. Zard SZ. Tetrahedron 1990; 46: 7587
- 8a Ono N. Okujima T. In Isocyanide Chemistry . Nenajdenko VG. Wiley-VCH; Weinheim: 2012: 385
- 8b Lygin AV. de Meijere A. Angew. Chem. Int. Ed. 2010; 49: 9094
- 9 This formation of pyrroles is based on the extensive but underappreciated work of the late Prof. U. Schöllkopf. It would therefore be more appropriate to call this route to pyrroles the Schöllkopf–Barton–Zard reaction. See: Hassner A. Namboothiri I. Organic Syntheses Based on Name Reactions . Elsevier; London: 2011
- 10 Fumoto Y. Eguchi T. Uno H. Ono N. J. Org. Chem. 1999; 64: 6518
- 11a Barton DH. R. Motherwell WB. Simon ES. Zard SZ. J. Chem. Soc., Perkin Trans. I 1986; 2243
- 11b Barton DH. R. Motherwell WB. Zard SZ. Tetrahedron Lett. 1984; 25: 3707
- 11c Barton DH. R. Motherwell WB. Zard SZ. J. Chem. Soc., Chem. Commun. 1984; 337
- 12 Quiclet-Sire B. Thévenot I. Zard SZ. Tetrahedron Lett. 1995; 36: 9469
- 13 Boivin J. Callier-Dublanchet A.-C. Quiclet-Sire B. Schiano A.-M. Zard SZ. Tetrahedron 1995; 51: 6517
- 14 For a review of nitrogen-centered radicals see: Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 15 For a recent review of the Claisen rearrangement see: Rehbein J. Hiersemann M. Synthesis 2013; 45: 1121
- 16 Gennet D. Zard SZ. Zhang H. Chem. Commun. 2003; 1870
- 17a Zard SZ. Angew. Chem., Int. Ed. Engl. 1997; 36: 672
- 17b Quiclet-Sire B. Zard SZ. Chem. Eur. J. 2006; 12: 6002
- 17c Quiclet-Sire B. Zard SZ. Top. Curr. Chem. 2006; 264: 201
- 17d Quiclet-Sire B. Zard SZ. Pure Appl. Chem. 2011; 83: 519
- 17e Quiclet-Sire B. Zard SZ. Chimia 2012; 66: 404
- 17f Zard SZ. Aust. J. Chem. 2006; 59: 663
- 17g Quiclet-Sire B. Zard SZ. Synlett 2016; 27: 680
- 17h Zard SZ. Org. Biomol. Chem. 2016; 14: 6891
- 17i Quiclet-Sire B. Zard SZ. Isr. J. Chem. 2017; 57: 202
- 17j Zard SZ. J. Phys. Org. Chem. 2012; 25: 953
- 18 El Qacemi M. Petit L. Quiclet-Sire B. Zard SZ. Org. Biomol. Chem. 2012; 10: 5707
- 19 Knorr L. Chem. Ber. 1884; 17: 1635
- 20 Quiclet-Sire B. Quintero L. Sanchez-Jimenez G. Zard SZ. Synlett 2003; 75
- 21 Thiophenes can be prepared in good yield from adducts 36 by heating with potassium iodide and acetic acid in a microwave oven. See: Jullien H. Quiclet-Sire B. Tétart T. Zard SZ. Org. Lett. 2014; 16: 302
- 22 Bergeot O. Corsi C. El Qacemi M. Zard SZ. Org. Biomol. Chem. 2006; 4: 278
- 23 See for example: Ishikawa S. Noda Y. Wada M. Nishikata T. J. Org. Chem. 2015; 80: 7555
- 25 Carreira EM. Fessard TC. Chem. Rev. 2014; 114: 8257
- 26a Binot G. Zard SZ. Tetrahedron Lett. 2003; 44: 7703
- 26b Heng R. Quiclet-Sire B. Zard SZ. Tetrahedron Lett. 2009; 50: 3613
- 27 Quiclet-Sire Wendeborn BF. Zard SZ. Chem. Commun. 2002; 2214
- 28 For an account of this work see: Debien L. Quiclet-Sire B. Zard SZ. Acc. Chem. Res. 2015; 48: 1237
- 29 Debien L. Quiclet-Sire B. Zard SZ. Org. Lett. 2011; 13: 5676
- 30 Osornio YM. Cruz-Almanza R. Jiménez-Montaño V. Miranda LD. Chem. Commun. 2003; 2316
- 31 Flórez-López E. Gomez-Pérez LB. Miranda LD. Tetrahedron Lett. 2010; 51: 6000
- 32 Guadarrama-Morales O. Méndez F. Miranda LD. Tetrahedron Lett. 2007; 48: 4515
- 33 Reyes-Gutiérrez PE. Torres-Ochoa RO. Martínez R. Miranda LD. Org. Biomol. Chem. 2009; 7: 1388
- 34 Iuga C. Olguín Uribe S. Miranda LD. Vivier-Bunge A. Int. J. Quantum Chem. 2010; 110: 697
- 35 Paleo E. Osornio YM. Miranda LD. Org. Biomol. Chem. 2011; 9: 361
- 36 Anthore-Dalion L. Liu Q. Zard SZ. J. Am. Chem. Soc. 2016; 138: 8404
For selected reviews on pyrroles see:
For a review of the Barton–Zard reaction in the context of isocyanide chemistry see:
For reviews see:
For an account of the discovery of the process, see:
For a review on its application to the synthesis of amines and anilines, see:
For a review on its application to the synthesis of organofluorine compounds, see:
For a review on its application to total synthesis, see:
For a detailed mechanistic discussion, see: