Synlett 2017; 28(19): 2581-2586
DOI: 10.1055/s-0036-1589126
cluster
© Georg Thieme Verlag Stuttgart · New York

Arylation of Amide and Urea C(sp3)–H Bonds with Aryl Tosylates Generated In Situ from Phenols

Yong-Yuan Gui
a   Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, #29 Wangjiang Road, Chengdu 610064, P. R. of China   Email: dgyu@scu.edu.cn
,
Xiao-Wang Chen
a   Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, #29 Wangjiang Road, Chengdu 610064, P. R. of China   Email: dgyu@scu.edu.cn
,
a   Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, #29 Wangjiang Road, Chengdu 610064, P. R. of China   Email: dgyu@scu.edu.cn
b   College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641112, P. R. of China   Email: chemzhwj@126.com
,
a   Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, #29 Wangjiang Road, Chengdu 610064, P. R. of China   Email: dgyu@scu.edu.cn
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (21772129), the “973” Project from of the MOST of China (2015CB856600), the “1000-Youth Talents Plan”, and the Fundamental Research Funds for the Central Universities.
Further Information

Publication History

Received: 30 July 2017

Accepted after revision: 04 October 2017

Publication Date:
03 November 2017 (online)


Published as part of the Cluster C–O Activation

Abstract

The arylation of amide and urea C(sp3)–H bonds with aryl tosylates generated in situ from phenols has been realized at room temperature by combining visible-light-photoredox catalysis, hydrogen-atom-transfer catalysis, and nickel catalysis. This streamlined protocol permits rapid functionalization of phenols and direct transformation of α-amino C(sp3)–H bonds. The C(sp3)–H arylation products are obtained in high yields with good functional-group tolerance at low catalyst loadings.

Supporting Information

 
  • References and Notes

  • 1 Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A. Bräse S. Oestreich M. Wiley-VCH; Weinheim: 2014
  • 2 Cross-Coupling Reactions: A Practical Guide. Miyaura N. Springer; Berlin: 2002
  • 3 De La Mare PB. Electrophilic Halogenation: Reaction Pathways Involving Attack by Electrophilic Halogens on Unsaturated Compounds. Cambridge University Press; Cambridge: 1976

    • For selected reviews, see:
    • 4a Yu D.-G. Li B.-J. Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
    • 4b Li B.-J. Yu D.-G. Sun C.-L. Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
    • 4c Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 4d Kozhushkov SI. Potukuchi HK. Ackermann L. Catal. Sci. Technol. 2013; 3: 562
    • 4e Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 4f Su B. Cao Z.-C. Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 4g Zarate C. van Gemmeren M. Somerville RJ. Martin R. Adv. Organomet. Chem. 2016; 66: 143
    • 4h Zeng H. Qiu Z. Domínguez-Huerta A. Hearne Z. Chen Z. Li C.-J. ACS Catal. 2017; 7: 510

      For selected examples, see:
    • 5a Wenkert E. Michelotti EL. Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
    • 5b Wenkert E. Michelotti EL. Swindell CS. Tingoli M. J. Org. Chem. 1984; 49: 4894
    • 5c Yu D.-G. Li B.-J. Zheng S.-F. Guan B.-T. Wang B.-Q. Shi Z.-J. Angew. Chem. Int. Ed. 2010; 49: 4566
    • 5d Yu D.-G. Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 7097
    • 5e Shi W.-J. Li X.-L. Li Z.-W. Shi Z.-J. Org. Chem. Front. 2016; 3: 375
    • 5f Cao Z.-C. Luo Q.-Y. Shi Z.-J. Org. Lett. 2016; 18: 5978

      For selected reviews, see:
    • 6a Kang F.-A. Sui Z. Murray WV. Eur. J. Org. Chem. 2009; 461
    • 6b Kumar R. Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121

    • For selected examples, see:
    • 6c Kang F.-A. Sui Z. Murray WV. J. Am. Chem. Soc. 2008; 130: 11300
    • 6d Luo Y. Wu J. Tetrahedron Lett. 2009; 50: 2103
    • 6e Mehta VP. Modha SG. Van der Eycken E. J. Org. Chem. 2010; 75: 976
    • 6f Li S.-M. Huang J. Chen G.-J. Han F.-S. Chem. Commun. 2011; 47: 12840
    • 7a Ackermann L. Mulzer M. Org. Lett. 2008; 10: 5043
    • 7b Kang F.-A. Lanter JC. Cai C. Sui Z. Murray WV. Chem. Commun. 2010; 46: 1347
    • 7c Shi C. Aldrich CC. Org. Lett. 2010; 12: 2286
    • 7d Sharma A. Vachhani D. Van der Eycken E. Org. Lett. 2012; 14: 1854

      For selected reviews, see:
    • 8a Narayanam JM. R. Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 8b Xuan J. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 8c Shi L. Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 8d Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 8e Hari DP. König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 8f Xi Y. Yi H. Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 8g Dai X.-J. Xu X.-L. Li X.-N. Chin. J. Org. Chem. 2013; 33: 2046
    • 8h Schultz DM. Yoon TP. Science 2014; 343: 985
    • 8i Xie J. Jin H. Xu P. Zhu C. Tetrahedron Lett. 2014; 55: 36
    • 8j Meggers E. Chem. Commun. 2015; 51: 3290
    • 8k Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 8l Wang C. Lu Z. Org. Chem. Front. 2015; 2: 179
    • 8m Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
    • 8n Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 8o Sun X. Yu S. Synlett 2016; 27: 2659
    • 8p Goddard J.-P. Ollivier C. Fensterbank L. Acc. Chem. Res. 2016; 49: 1924
    • 8q Koike T. Akita M. Acc. Chem. Res. 2016; 49: 1937
    • 8r Pan X. Xia H. Wu J. Org. Chem. Front. 2016; 3: 1163
    • 8s Sun X. Yu S. Chin. J. Org. Chem. 2016; 36: 239
    • 8t Huang H. Jia K. Chen Y. ACS Catal. 2016; 6: 4983
    • 8u Zhang J. Chen Y. Acta Chim. Sin. (Engl. Ed.) 2017; 75: 41
    • 8v Cheng X. Hu X. Lu Z. Chin. J. Org. Chem. 2017; 35: 251
    • 8w Chen J.-R. Yan D.-M. Wei Q. Xiao W.-J. ChemPhotoChem 2017; 1: 148
    • 8x Zhong J.-J. Meng Q.-Y. Chen B. Tung C.-H. Wu L.-Z. Acta Chim. Sin. (Engl. Ed.) 2017; 75: 34
    • 8y Liu Q. Wu L.-Z. Natl. Sci. Rev. 2017; 4: 359
    • 8z Qin Q. Jiang H. Hu Z. Ren D. Yu S. Chem. Rec. 2017; 17: 754
    • 8aa Xie J. Jin H. Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193

      For selected reviews on visible-light-photoredox/transition-metal dual catalysis, see:
    • 9a Hopkinson MN. Sahoo B. Li J.-L. Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 9b Levin MD. Kim S. Toste FD. ACS Cent. Sci. 2016; 2: 293
    • 9c Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
    • 9d Tóth BL. Tischler O. Novák Z. Tetrahedron Lett. 2016; 57: 4505
    • 9e Hopkinson MN. Tlahuext-Aca A. Glorius F. Acc. Chem. Res. 2016; 49: 2261
    • 9f Fabry DC. Rueping M. Acc. Chem. Res. 2016; 49: 1969 ; see also Ref. 6

      For selected reviews on photoredox/Ni dual catalysis, see:
    • 10a Tellis JC. Kelly CB. Primer DN. Jouffroy M. Patel NR. Molander GA. Acc. Chem. Res. 2016; 49: 1429
    • 10b Gui Y.-Y. Sun L. Lu Z.-P. Yu D.-G. Org. Chem. Front. 2016; 3: 522

    • For selected examples, see:
    • 10c Tellis JC. Primer DN. Molander GA. Science 2014; 345: 433
    • 10d Zuo Z. Ahneman DT. Chu L. Terrett JA. Doyle AG. MacMillan DW. C. Science 2014; 345: 437
    • 10e Xuan J. Zeng T.-T. Chen J.-R. Lu L.-Q. Xiao W.-J. Chem. Eur. J. 2015; 21: 4962
    • 10f Tasker SZ. Jamison TF. J. Am. Chem. Soc. 2015; 137: 9531
    • 10g Shields BJ. Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
    • 10h Oderinde MS. Jones NH. Juneau A. Frenette M. Aquila B. Tentarelli S. Robbins DW. Johannes JW. Angew. Chem. Int. Ed. 2016; 55: 13219
    • 10i Duan Z. Li W. Lei A. Org. Lett. 2016; 18: 4012
    • 10j Lima F. Kabeshov MA. Tran DN. Battilocchio C. Sedelmeier J. Sedelmeier G. Schenkel B. Ley SV. Angew. Chem. Int. Ed. 2016; 55: 14085
    • 10k Fan L. Jia J. Hou H. Lefebvre Q. Rueping M. Chem. Eur. J. 2016; 22: 16437
    • 10l Shaw MH. Shurtleff VW. Terrett JA. Cuthbertson JD. MacMillan DW. C. Science 2016; 352: 1304
    • 11a Gui Y.-Y. Liao L.-L. Sun L. Zhang Z. Ye J.-H. Shen G. Lu Z.-P. Zhou W.-J. Yu D.-G. Chem. Commun. 2017; 53: 1192
    • 11b Liao L.-L. Gui Y.-Y. Zhang X.-B. Shen G. Liu H.-D. Zhou W.-J. Li J. Yu D.-G. Org. Lett. 2017; 19: 3735
    • 11c Gui Y.-Y. Wang Z.-X. Zhou W.-J. Liao L.-L. Song L. Yin Z.-B. Li J. Yu D.-G. Asian J. Org. Chem. 2017; DOI: 10.1002/ajoc.201700450.
    • 11d Zhou W.-J. Cao G.-M. Shen G. Zhu X.-Y. Gui Y.-Y. Ye J.-H. Sun L. Liao L.-L. Li J. Yu D.-G. Angew. Chem. Int. Ed. 2017; DOI: 10.1002/anie.201704513.
    • 11e Ye J.-H. Miao M. Huang H. Shen G. Yan S.-S. Liao L.-L. Yin Z.-B. Zhou W.-J. Yu D.-G. Angew. Chem. Int. Ed. 2017; DOI: 10.1002/anie.201707862.
  • 12 N-(4-Benzoylbenzyl)-N-methylformamide (3aa); Typical ProcedureA flame-dried, 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with Ir[dF(CF3)ppy]2(dtbbpy)(PF6) (0.012 mmol). The tube was evacuated and filled with N2 three times then transferred to a glovebox. NiBr2·glyme (0.015 mmol), Me4Phen (0.015 mmol), and Li2CO3 (0.6 mmol) were added to the tube, which was then transferring out of the glovebox and placed under an atmosphere of N2. DMF (1a; 1.0 mL) was then added to the tube followed by 3-acetoxyquinuclidine (0.33 mmol). 4-Hydroxybenzophenone (2a) (0.3 mmol), TsCl (0.45 mmol), Cs2CO3 (0.6 mmol), and DMF (1a, 5.0 mL) were combined in a second 10 mL Schlenk tube and stirred at r.t. for 30 mins. This mixture was then filtered through an Acrodisc into the first Schlenk tube by using a syringe. The resulting mixture was degassed by three freeze–pump–thaw cycles, then placed at a distance of 3–5 cm from a 30 W blue LED and stirred at r.t. for 36 h. The solvent was then removed in vacuum and the crude product was purified by flash chromatography [silica gel (200–300 mesh), PE–EtOAc (5:1 to 1:1)] to give a pale-yellow oil; yield: 64.6 mg (85%, 0.255 mmol); Rf = 0.2 (PE–EtOAc, 1:1).1H NMR (400 MHz, CDCl3): δ = 8.27 (d, J = 46.8 Hz, 1 H), 7.87–7.76 (m, 4 H), 7.65–7.55 (m, 1 H), 7.49 (ddd, J = 8.5, 6.7, 3.9 Hz, 2 H), 7.39–7.30 (m, 2 H), 4.56 (d, J = 42.1 Hz, 2 H), 2.88 (d, J = 35.8 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 195.22, 195.03, 161.78, 161.68, 139.71, 139.44, 136.39, 136.25, 135.92, 131.62, 131.50, 129.65, 129.50, 128.97, 127.34, 127.29, 126.89, 126.18, 52.13, 46.54, 33.25, 28.65. HRMS (ESI): m/z [M + H]+ calcd. for C16H16NO2: 254.1176; found: 254.1176. N-(4-Benzoylbenzyl)-N-methylacetamide (3ba)Pale-yellow oil; yield: 43.2 mg (0.162 mmol, 54%); Rf = 0.2 (PE–EtOAc, 1:1). 1H NMR (400 MHz, CDCl3): δ = 7.79 (dddd, J = 11.7, 8.1, 6.4, 1.9 Hz, 4 H), 7.64–7.55 (m, 1 H), 7.49 (td, J = 7.5, 5.8 Hz, 2 H), 7.39–7.27 (m, 2 H), 4.65 (d, J = 19.2 Hz, 2 H), 2.98 (s, 3 H), 2.18 (d, J = 10.9 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 195.27, 195.03, 169.99, 169.88, 141.15, 140.32, 136.47, 136.30, 135.97, 135.59, 131.56, 131.42, 129.73, 129.42, 128.95, 128.93, 127.32, 127.25, 126.63, 125.10, 53.02, 49.46, 34.84, 32.89, 20.76, 20.44. HRMS (ESI): m/z [M + H]+ calcd. for C17H18NO2: 268.1332; found: 268.1332.