Subscribe to RSS
DOI: 10.1055/s-0036-1589084
Pursuit of Enantioselective Synthesis of Heterocycle-Bearing Stereocenters: The Development of a Stereocontrolled BINOL-Catalyzed Conjugate Addition of Organoboron Nucleophiles
This work was financially supported by the Welch Foundation (Grant E-1744)Publication History
Received: 05 June 2017
Accepted: 27 June 2017
Publication Date:
15 August 2017 (online)
Abstract
This account chronicles the iterative development of an enantioselective conjugate addition of organoboron nucleophiles to α,β-unsaturated enones and enals catalyzed by BINOL derivatives. Beginning with a specific application of this transformation to the total synthesis of the flinderole alkaloids, the transformation progressed to encompass a much larger scope of heterocycle-substituted electrophiles. The next phase saw progress toward the use of a broader scope of functional nucleophiles, with application in a strategy to synthesize discoipyrrole D. At each stage of this chronologically organized discussion, key problems, hypotheses, and solutions are presented to show the sources of discovery and solutions to problems as the catalyst and other reaction components were made more reactive. The interplay of target-directed reaction development, efforts to increase the scope of compatible functional groups, mechanistic studies, and empirical exploration is described to illustrate sources of chemical discovery.
1 Introduction
2 Synthesis of the Flinderole Natural Products
3 Indole-Bearing Stereocenters
4 Heteroaryl-Bearing Stereocenters
5 Bis-Heteroaryl Stereocenters
6 Synthetic Strategy for Discoipyrrole D
7 Bis-Aryl Stereocenters
8 Remaining Challenges
9 Conclusion
-
References
- 1 Current affiliation: Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam 70000.
- 2 Current affiliation: Biochemistry Department, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
- 3 Current affiliation: Sciegen Pharmaceuticals, 89 Arkay Drive, Hauppauge, NY 11788, USA.
- 4 Fernandez LS. Buchanan MS. Carroll AR. Feng YJ. Quinn RJ. Avery VM. Org. Lett. 2009; 11: 329
- 5a May JA. Zeidan R. Stoltz B. Tetrahedron Lett. 2003; 44: 1203
- 5b May JA. Stoltz B. Tetrahedron 2006; 62: 5262
- 5c Han S.-J. Vogt F. Krishnan S. May JA. Gatti M. Virgil SC. Stoltz BM. Org. Lett. 2014; 16: 3316
- 6a Sullivan DJ. Gluzman IY. Russell DG. Goldberg DE. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 11865
- 6b Fernandez LS. Sykes ML. Andrews KT. Avery VM. Int. J. Antimicrob. Agents 2010; 36: 275
- 7 Snow RW. Guerra CA. Noor AM. Myint HY. Hay SI. Nature 2005; 434: 214
- 8a Pousset J.-L. Cavé A. Chiaroni A. Riche C. J. Chem. Soc., Chem. Commun. 1977; 261
- 8b Tillequin F. Koch M. Pousset J.-L. Cavé A. J. Chem. Soc., Chem. Commun. 1978; 826
- 8c Tillequin F. Koch M. Bert M. Sevenet T. J. Nat. Prod. 1979; 42: 92
- 9a Vallakati R. Smuts JP. Armstrong DW. May JA. Tetrahedron Lett. 2013; 54: 5892
- 9b Smuts JP. Na Y.-C. Vallakati R. Přibylka A. May JA. Armstrong DW. Anal. Bioanal. Chem. 2013; 405: 9169
- 10 Nishibayashi Y. Yoshikawa M. Inada Y. Hidai M. Uemura S. J. Am. Chem. Soc. 2002; 124: 11846
- 11a Collins KD. Glorius F. Nat. Chem. 2013; 5: 597
- 11b Collins KD. Glorius F. Acc. Chem. Res. 2015; 48: 619
- 12a Sieber JD. Morken JP. J. Am. Chem. Soc. 2008; 130: 4978
- 12b Wilsily A. Fillion E. J. Org. Chem. 2009; 74: 8583
- 13 Bailey PD. Hollinshead SP. Tetrahedron Lett. 1987; 28: 2879
- 14a Enders D. Balensiefer T. Acc. Chem. Res. 2004; 37: 534
- 14b Notz W. Tanaka F. Barbas CF. Acc. Chem. Res. 2004; 37: 580
- 14c Jacobsen EN. MacMillan DW. C. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20618
- 15a Wu TR. Chong JM. J. Am. Chem. Soc. 2007; 129: 4908
- 15b Chong JM. Shen L. Taylor NJ. J. Am. Chem. Soc. 2000; 122: 1822
- 15c Wu TR. Chong JM. J. Am. Chem. Soc. 2005; 127: 3244
- 16a Pellegrinet SC. Goodman JM. J. Am. Chem. Soc. 2006; 128: 3116
- 16b Paton RS. Goodman JM. Pellegrinet SC. J. Org. Chem. 2008; 73: 5078
- 17 Popov I. Lindeman S. Daugulis O. J. Am. Chem. Soc. 2011; 133: 9286
- 19a Bloom JW. G. Wheeler SE. Angew. Chem. Int. Ed. 2011; 50: 7847
- 19b Wheeler SE. J. Am. Chem. Soc. 2011; 133: 10262
- 19c Raju RK. Bloom JW. G. An Y. Wheeler SE. ChemPhysChem 2011; 12: 3116
- 19d Bloom JW. G. Raju RK. Wheeler SE. J. Chem. Theory Comput. 2012; 8: 3167
- 19e Wheeler SE. Acc. Chem. Res. 2013; 46: 1029
- 19f Raju RK. Bloom JW. G. Wheeler SE. J. Chem. Theory Comput. 2013; 9: 3479
- 19g Wheeler SE. Bloom JW. G. J. Phys. Chem. A 2014; 118: 6133
- 20 Catalysts with aryl substituents containing electron-donating groups at the 3 and 3′ positions were also tested as negative controls and found to be nearly inoperative catalytically.
- 21 Barnett DS. Moquist PN. Schaus SE. Angew. Chem. Int. Ed. 2009; 48: 8679
- 22 Lundy BJ. Jansone-Popova S. May JA. Org. Lett. 2011; 13: 4958
- 23a Vallakati R. May JA. J. Am. Chem. Soc. 2012; 134: 6936
- 23b Vallakati R. Lundy BJ. Jansone-Popova S. May JA. Chirality 2015; 27: 14
- 24 In truth, it is difficult for us to truly abandon a problem or idea, and more often the time available to explore possible reaction strategies for a desired transformation runs out before the list of ideas.
- 25 Direct monitoring of these substrates proved problematic for reasons of heterogeneity.
- 26a Mancilla T. Contreras R. Wrackmeyer B. J. Organomet. Chem. 1986; 307: 1
- 26b Gillis EP. Burke MD. J. Am. Chem. Soc. 2008; 130: 14084
- 26c Knapp DM. Gillis EP. Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
- 27a Vedejs E. Chapman R. Fields S. Lin S. Schrimpf M. 1995; 60: 3020
- 27b Lennox AJ. J. Lloyd-Jones GC. Angew. Chem. Int. Ed. 2012; 51: 9385
- 28 Le PQ. Nguyen TS. May JA. Org. Lett. 2012; 14: 6104
- 29 Nguyen TS. Yang MS. May JA. Tetrahedron Lett. 2015; 56: 3337
- 30a Hu Y. Potts MB. Colosimo D. Herrera-Herrera ML. Legako AG. Yousufuddin M. White MA. MacMillan JB. J. Am. Chem. Soc. 2013; 135: 13387
- 30b Colosimo DA. MacMillan JB. J. Am. Chem. Soc. 2016; 138: 2383
- 31a Kuivila HG. Nahabedian KV. J. Am. Chem. Soc. 1961; 83: 2159
- 31b Kuivila HG. Reuwer JF. Jr. Mangravite JA. Can. J. Chem. 1963; 41: 3081
- 31c Billingsley KL. Anderson KW. Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 3484
- 31d Klingensmith LM. Bio MM. Moniz GA. Tetrahedron Lett. 2007; 48: 8242
- 32 Lennox AJ. J. Lloyd-Jones GC. Isr. J. Chem. 2010; 50: 664
- 33 Molander GA. Ellis N. Acc. Chem. Res. 2007; 40: 275
- 34 Lennox AJ. J. Lloyd-Jones GC. J. Am. Chem. Soc. 2012; 134: 7431
- 35a Hara S. Hyuga S. Aoyama M. Sato M. Suzuki A. Tetrahedron Lett. 1990; 31: 247
- 35b Fujishima H. Takada E. Hara S. Suzuki A. Chem. Lett. 1992; 695
- 35c Hara S. Ishimura S. Suzuki A. Synlett 1996; 993
- 35d Hara S. Shudoh H. Ishimura S. Suzuki A. Bull. Chem. Soc. Jpn. 1998; 71: 2403
- 35e Hara S. Shudoh H. Ishimura S. Suzuki A. Bull. Chem. Soc. Jpn. 1998; 71: 2403
- 36a Batey RA. MacKay DB. Santhakumar V. J. Am. Chem. Soc. 1999; 121: 5075
- 36b Batey RA. Thadani AN. Smil DV. Tetrahedron Lett. 1999; 40: 4289
- 36c Batey RA. Thadani AN. Smil DV. Lough AJ. Synthesis 2000; 990
- 36d Thadani AN. Batey RA. Org. Lett. 2002; 4: 3827
- 36e Li S.-W. Batey RA. Chem. Commun. 2004; 1382
- 36f Nowrouzi F. Thadani AN. Batey RA. Org. Lett. 2009; 11: 2631
- 36g Nowrouzi F. Batey RA. Angew. Chem. Int. Ed. 2012; 52: 892
- 37 Shih J.-L. Nguyen TS. May JA. Angew. Chem. Int. Ed. 2015; 54: 9931
- 38 These reagents were tested with bromodiscoipyrrole A to determine compatibility.
- 39 Calderbank KE. Calvert RL. Lukins PB. Ritchie G. Aust. J. Chem. 1981; 34: 1835
- 40 Lide DR. Kehiaian HV. CRC Handbook of Thermophysical and Thermochemical Data . CRC Press; Ann Arbor: 1994
- 41 The reactions generally remained heterogeneous with these additives.
The initial report stated that the naturally occurring flinderoles exhibited specific rotations and suggested they were isolated as pure enantiomers, but that data has since been shown to be unreliable. See also:
One proposed solution with great promise is an intermolecular ‘functional group screen’:
See also:
For examples of this reactivity, see: