Synlett 2017; 28(07): 835-840
DOI: 10.1055/s-0036-1588930
letter
© Georg Thieme Verlag Stuttgart · New York

Ligandless Palladium-Catalyzed Reductive Carbonylation of Aryl Iodides under Ambient Conditions

Wei Han*
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China   Email: hanwei@njnu.edu.cn
b   Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China
,
Binbin Liu
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China   Email: hanwei@njnu.edu.cn
,
Junjie Chen
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China   Email: hanwei@njnu.edu.cn
,
Qing Zhou
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China   Email: hanwei@njnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 26 October 2016

Accepted after revision: 13 December 2016

Publication Date:
12 January 2017 (online)


Abstract

Ligandless palladium-catalyzed reductive carbonylation of aryl iodides for the synthesis of aromatic aldehydes has been developed. This carbonylation process proceeded effectively even under ambient temperature and pressure. In addition, this method enables successive reductive carbonylation of diiodobenzenes to furnish dialdehydes in satisfactory yields. Finally, the nature of the active catalytic species is discussed.

Supporting Information

 
  • References and Notes

  • 1 Carey FA, Sundberg RJ. Advanced Organic Chemistry . Springer; Heidelberg: 2007
  • 2 Schoenberg A, Heck RF. J. Am. Chem. Soc. 1974; 96: 7761

    • For some recent reviews on Pd-catalyzed carbonylations of aryl halides, see:
    • 3a Wu XF, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 3b Wu XF, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 3c Grigg R, Mutton SP. Tetrahedron 2010; 66: 5515
    • 3d Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 3e Barnard CF. J. Organometallics 2008; 27: 5402
    • 3f Wu XF, Beller M. Transition Metal Catalyzed Carbonylation Reactions-Carbonylative Activation of C–X Bonds. Springer; Berlin, Heidelberg: 2013
    • 4a Qi XX, Li C.-L, Wu XF. Chem. Eur. J. 2016; 22: 5835
    • 4b Cacchi S, Fabrizi G, Goggiamani A. J. Comb. Chem. 2004; 6: 692
  • 5 Ueda T, Konishi H, Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
  • 6 Korsager S, Taaning RH, Lindhardt AT, Skrydstrup T. J. Org. Chem. 2013; 78: 6112
  • 7 Natte K, Dumrath A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2014; 53: 10090
  • 8 Christensen SH, Olsen EP. K, Rosenbaum J, Madsen R. Org. Biomol. Chem. 2015; 13: 938
    • 9a Barnard CF. J. Organometallics 2008; 27: 5402
    • 9b Barnard CF. J. Org. Process Res. Dev. 2008; 12: 566
    • 9c Maitlis PM, Haynes A. Synthesis Based on Carbon Monoxide, In Metal-Catalysis in Industrial Organic Processes . Chiusoli GP, Maitlis PM. RSC Publishing; Cambridge: 2006

      For selected examples of palladium-catalyzed reductive carbonylation of aryl halides, see:
    • 10a Klaus S, Neumann H, Zapf A, Strubing D, Huber S, Almena J, Riermeier T, Gross P, Sarich M, Krahnert W.-R, Rossen K, Beller M. Angew. Chem. Int. Ed. 2005; 45: 154
    • 10b Hamasaki A, Yasutaka Y, Norio T, Ishida T, Akita T, Ohashi H, Yokoyama T, Honma T, Tokunaga M. Appl. Catal., A 2014; 469: 146
    • 10c Hao WY, Ding GD, Cai MZ. Catal. Commun. 2014; 51: 53
    • 10d Sergeev AG, Spannenberg A, Beller M. J. Am. Chem. Soc. 2008; 130: 15549
    • 10e Brennführer A, Neumann H, Beller M. Synlett 2007; 2537
    • 10f Carelli I, Chiarotto I, Cacchi S, Pace P, Amatore C, Jutand A, Meyer G. Eur. J. Org. Chem. 1999; 1471
    • 10g Hamasaki A, Yasutaka Y, Norio T, Ishida T, Akita T, Ohashi H, Yokoyama T, Honma T, Tokunaga M. Appl. Catal., A 2014; 469: 146
    • 10h Neumann H, Kadyrov R, Wu XF, Beller M. Chem. Asian J. 2012; 7: 2213
    • 10i Singh AS, Bhanage BM, Nagarkar JM. Tetrahedron Lett. 2011; 52: 2383
    • 10j Brennführer A, Neumann H, Klaus S, Riermeier T, Almena J, Beller M. Tetrahedron 2007; 63: 6252
    • 10k Yu B, Yang ZZ, Zhao YF, Hao LD, Zhang HY, Gao X, Han BX, Liu ZM. Chem. Eur. J. 2016; 22: 1097
    • 10l Yu B, Zhao YF, Zhang HY, Xu JL, Hao LD, Gao X, Liu ZM. Chem. Commun. 2014; 50: 2330
    • 11a Zhao HY, Du HY, Yuan XR, Wang TJ, Han W. Green Chem. 2016; 18: 5782
    • 11b Zhong YZ, Han W. Chem. Commun. 2014; 50: 3874
    • 11c Zhou Q, Wei SH, Han W. J. Org. Chem. 2014; 79: 1454
    • 11d Han W, Jin FL, Zhou Q. Synthesis 2015; 47: 1861
    • 11e Zhong YZ, Gong XX, Zhu XS, Ni ZC, Wang HY, Fu JL, Han W. RSC Adv. 2014; 4: 63216
    • 11f Cheng LJ, Zhong YZ, Ni ZC, Du HY, Jin FL, Rong Q, Han W. RSC Adv. 2014; 4: 44312

      For silanes as hydride source for reductive carbonylation of aryl halides, see:
    • 12a Ashfield L, Barnard CF. J. Org. Process Res. Dev. 2007; 11: 39
    • 12b Pri-Bar I, Buchman O. J. Org. Chem. 1984; 49: 4009
    • 12c Kotsuki H, Datta PK, Suenaga H. Synthesis 1996; 470
  • 13 Palladium nanoparticles were prepared according to the reference: Han W, Liu C, Jin ZL. Adv. Synth. Catal. 2008; 350: 501
  • 14 General Procedure The reaction was carried out in a 25 mL flask was equipped with 4-iodo-4-nitrobenzene (1a, 0.5 mmol, 127.0 mg), Pd(OAc)2 (0.01 mmol, 2.4 mg), Na2CO3 (0.5 mmol, 53.1 mg), NaHCO3 (0.5 mmol, 42.0 mg), and PEG-400 (2.0 g) before standard cycles of evacuation and back-filling with dry and pure carbon monoxide. Triethylsilane (1.0 mmol, 162.8 μL) was added successively. The mixture was stirred under ambient temperature and pressure for the indicated time. At the end of the reaction, the reaction mixture was poured into a sat. aq NaCl solution (20 mL) and extracted with EtOAc (3 × 15 mL). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. The residue was purified by column chromatography on silica gel (PE–Et2O, 50:1) to afford the corresponding product 2a, a light yellow solid (66 mg, 87%); mp 105.9–106.4 °C. 1H NMR (400 MHz, CDCl3): δ = 10.13 (s, 1 H), 8.36 (d, J = 8.9 Hz, 2 H), 8.05 (d, J = 8.9 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 190.3, 151.1, 140.0, 130.4, 124.3 ppm.
    • 15a Dong LC, Crowe M, West J, Ammann JR. Tetrahedron Lett. 2004; 45: 2731
    • 15b Reinhard EJ, Wang JL, Durley RC, Fobian YM, Grapperhaus ML, Hickory BS, Massa MA, Norton MB, Promo MA, Tollefson MB, Vernier WF, Connolly DT, Witherbee BJ, Melton MA, Regina KJ, Smith ME, Sikorski JA. J Med Chem. 2003; 46: 2152
  • 16 Zhuang XD, Zhang F, Wu DQ, Feng XL. Adv. Mater. 2014; 26: 3081
    • 17a Astruc D. Inorg. Chem. 2007; 46: 1884
    • 17b Pachón LD, Rothenberg G. Appl. Organomet. Chem. 2008; 22: 288
    • 17c Thathagar MB, Elshof JE, Rothenberg G. Angew. Chem. Int. Ed. 2006; 45: 2886
    • 17d Thathagar MB, Beckers J, Rothenberg G. Adv. Synth. Catal. 2003; 345: 979
  • 18 Widegren JA, Finke RG. J. Mol. Catal. A.: Chem. 2003; 198: 317
  • 19 Han W, Liu C, Jin ZL. Org. Lett. 2007; 9: 4005