Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(06): 734-740
DOI: 10.1055/s-0036-1588924
DOI: 10.1055/s-0036-1588924
letter
Magnetic Metal–Organic Framework CoFe2O4@SiO2@IRMOF-3 as an Efficient Catalyst for One-Pot Synthesis of Functionalized Dihydro-2-oxopyrroles
Further Information
Publication History
Received: 22 October 2016
Accepted after revision: 20 November 2016
Publication Date:
16 December 2016 (online)
Abstract
A magnetic metal–organic framework-based catalyst CoFe2O4@SiO2@IRMOF-3 was prepared and identified as an efficient catalyst for the synthesis of a variety of functionalized dihydro-2-oxopyrroles by a one-pot, four-component reaction of a dialkyl acetylenedicarboxylate, an aryl amine, formaldehyde, and optionally a second amine or diamine at room temperature. The catalyst was magnetically separated and recovered without significant loss of its catalytic efficiency, even after eight reaction cycles.
Key words
magnetic separation - metal–organic framework - nanostructures - multicomponent reactions - dihydropyrroles - cobalt catalysisSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588924.
- Supporting Information
-
References and Notes
- 1 Goh W.-K, Gardner CR, Chandra Sekhar KV. G, Biswas NN, Nizalapur S, Rice SA, Willcox M, Black DSt.C, Kumar N. Bioorg. Med. Chem. 2015; 23: 7366
- 2 Starosyla SA, Volynets GP, Lukashov SS, Gorbatiuk OB, Golub AG, Bdzhola VG, Yarmoluk SM. Bioorg. Med. Chem. 2015; 23: 2489
- 3 Jung ME, Byun BJ, Kim H.-M, Lee JY, Park J.-H, Lee N, Son YH, Choi SU, Yang K.-M, Kim S.-J, Lee K, Kim Y.-C, Choi G. Bioorg. Med. Chem. Lett. 2016; 26: 2719
- 4 Zhu Q, Gao L, Chen Z, Zheng S, Shu H, Li J, Jiang H, Liu S. Eur. J. Med. Chem. 2012; 54: 232
- 5 Prajapti SK, Nagarsenkar A, Guggilapu SD, Gupta KK, Allakonda L, Jeengar MK, Naidu VG. M, Babu BN. Bioorg. Med. Chem. Lett. 2016; 26: 3024
- 6 Ye Y, Fang F, Li Y. Bioorg. Med. Chem. Lett. 2015; 25: 597
- 7 Lv LY, Zheng S, Cai X, Chen Z, Zhu Q, Liu S. ACS Comb. Sci. 2013; 15: 183
- 8 Sajadikhah SS, Maghsoodlou MT, Hazeri N. Chin. Chem. Lett. 2014; 25: 58
- 9 Hazeri N, Sajadikhah SS, Maghsoodlou MT, Norouzi M, Moein M, Mohamadian-Souri S. J. Chem. Res. 2013; 37: 550
- 10 Hazeri N, Sajadikhah SS, Maghsoodlou MT, Mohamadian-Souri S, Norouzi M, Moein M. J. Chin. Chem. Soc. (Taipei) 2014; 61: 217
- 11 Sajadikhah SS, Maghsoodlou MT, Hazeri N, Moein M, Norouzi M, Mohamadian-Souri S. Lett. Org. Chem. 2014; 11: 268
- 12 Bamoniri A, Mirjlili BB. F, Tarazian R. Monatsh. Chem. 2015; 146: 2107
- 13 Sajadikhah SS, Hazeri N. Res. Chem. Intermed. 2014; 40: 737
- 14 Sajadikhah SS, Maghsoodlou MT, Hazeri N. Res. Chem. Intermed. 2015; 41: 2503
- 15 Sajadikhah SS, Maghsoodlou MT, Hazeri N, Mohamadian-Souri S. Res. Chem. Intermed. 2016; 42: 2805
- 16 Ghorbani-Vaghei R, Azarifar D, Dalirana S, Oveisi AR. RSC Adv. 2016; 6: 29182
- 17 Mirjalili BB. F, Reshquiyea RZ. RSC Adv. 2015; 5: 15566
- 18 Sajadikhah SS, Maghsoodlou MT. RSC Adv. 2014; 4: 43454
- 19 Khan A, Ghosh A, Khan MM. Tetrahedron Lett. 2012; 53: 2622
- 20 Bai Y, Dou YB, Xie L.-H, Rutledge W, Li J.-R, Zhou H.-C. Chem. Soc. Rev. 2016; 45: 2327
- 21 Pei X, Chen Y, Li S, Zhang S, Feng X, Zhou J, Wang B. Chin. J. Chem. 2016; 34: 157
- 22 Nandasiri MI, Jambovane SR, McGrail BP, Schaef HT, Nune SK. Coord. Chem. Rev. 2016; 311: 38
- 23 Stavila V, Talin AA, Allendorf MD. Chem. Soc. Rev. 2014; 43: 5994
- 24 Bradshaw D, Garai A, Huo J. Chem. Soc. Rev. 2012; 41: 2344
- 25 Hu Z, Deibert BJ, Li J. Chem. Soc. Rev. 2014; 43: 5815
- 26 Huxford RC, Della Rocca J, Lin W. Curr. Opin. Chem. Biol. 2010; 14: 262
- 27 Della Rocca J, Liu DM, Lin W. Acc. Chem. Res. 2011; 44: 957
- 28 Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. Chem. Soc. Rev. 2015; 44: 6804
- 29 Bai C, Li A, Yao XF, Liu H, Li Y. Green Chem. 2016; 18: 1061
- 30 Dhakshinamoorthy A, Asiri AM, Garcia H. Chem. Soc. Rev. 2015; 44: 1922
- 31 Taher A, Lee D.-J, Lee B.-K, Lee I.-M. Synlett 2016; 27: 1433
- 32 Wang J, Yang M, Dong W, Jin Z, Tang J, Fan S, Lu Y, Wang G. Catal. Sci. Technol. 2016; 6: 161
- 33 Tharun J, Bhin K.-M, Roshan R, Kim DW, Kathalikkattil AC, Babu R, Ahn HY, Won YS, Park D.-W. Green Chem. 2016; 18: 2479
- 34 Dhakshinamoorthy A, Asiri AM, Garcia H. Tetrahedron 2016; 72: 2895
- 35 Ho SL, Yoon IC, Cho CS, Choi H.-J. J. Organomet. Chem. 2015; 791: 13
- 36 Dhakshinamoorthy A, Alvaro M, Garcia H. Adv. Synth. Catal. 2010; 352: 3022
- 37 Wee LH, Bonino F, Lamberti C, Bordiga S, Martens JA. Green Chem. 2014; 16: 1351
- 38 Zhang Z, Chen J, Bao Z, Chang G, Xing H, Ren Q. RSC Adv. 2015; 5: 79355
- 39 Jiang S, Yan J, Habimana F, Ji S. Catal. Today 2016; 264: 83
- 40 Pérez-Mayoral E, Čejka J. ChemCatChem 2011; 3: 157
- 41 Puthiaraj P, Ramu A, Pitchumani K. Asian J. Org. Chem. 2014; 3: 784
- 42a Azizi K, Azarnia J, Karimi M, Yazdani E, Heydari A. Synlett 2016; 27: 1810
- 42b Fujita K.-i, Fujii A, Sato J, Yasuda H. Synlett 2016; 27: 1941
- 42c Ghanbaripour R, Samadizadeh M, Honarpisheh G, Abdolmohammadi M. Synlett 2015; 26: 2117
- 43a Li X, Zhang W, Liu Y, Li R. ChemCatChem 2016; 8: 1111
- 43b Wang R, Zhang C, Wang S, Zhou Y. Huaxue Jinzhan 2015; 27: 945 ; DOI: 10.7536/PC150110
- 44a Li P.-H, Li B.-L, An Z.-M, Mo L.-P, Cui Z.-S, Zhang Z.-H. Adv. Synth. Catal. 2013; 355: 2952
- 44b Lu J, Li X.-T, Ma E.-Q, Mo L.-P, Zhang Z.-H. ChemCatChem 2014; 6: 2854
- 44c Li B.-L, Zhang M, Hu H.-C, Du X, Zhang Z.-H. New J. Chem. 2014; 38: 2435
- 44d Lu J, Ma E.-Q, Liu Y.-H, Li Y.-M, Mo L.-P, Zhang Z.-H. RSC Adv. 2015; 5: 59167
- 44e Zhang M, Lu J, Zhang J.-N, Zhang Z.-H. Catal. Commun. 2016; 78: 26
- 44f Zhao X.-N, Hu H.-C, Zhang F.-J, Zhang Z.-H. Appl. Catal., A 2014; 482: 258
- 44g Zhao X.-N, Hu G.-F, Tang M, Shi T.-T, Guo X.-L, Li T.-T, Zhang Z.-H. RSC Adv. 2014; 4: 51089
- 45a Li B.-L, Li P.-H, Fang X.-N, Li C.-X, Sun J.-L, Mo L.-P, Zhang Z.-H. Tetrahedron 2013; 69: 7011
- 45b Guo R.-Y, Wang P, Wang G.-D, Mo L.-P, Zhang Z.-H. Tetrahedron 2013; 69: 2056
- 45c Guo R.-Y, An Z.-M, Mo L.-P, Yang S.-T, Liu H.-X, Wang S.-X, Zhang Z.-H. Tetrahedron 2013; 69: 9931
- 45d Liu P, Hao J, Zhang Z. Chin. J. Chem. 2016; 34: 637
- 45e Li X.-T, Liu Y.-H, Liu X, Zhang Z.-H. RSC Adv. 2015; 5: 25625
- 45f Li X.-T, Zhao A.-D, Mo L.-P, Zhang Z.-H. RSC Adv. 2014; 4: 51580
- 45g Guo R.-Y, An Z.-M, Mo L.-P, Wang R.-Z, Liu H.-X, Wang S.-X, Zhang Z.-H. ACS Comb. Sci. 2013; 15: 557
- 46 Magnetic CoFe2O4@SiO2@IRMOF-3 Nanoparticles CoFe2O4 magnetic nanoparticles (NPs) were synthesized by chemical co-precipitation from FeCl3·6H2O and CoCl2·6H2O. The surface of the CoFe2O4 NPs was coated with a layer of SiO2 by adding distilled H2O (80 mL) to the purified CoFe2O4 NPs (1 g), heating for 1 h at 40 °C, adding concd aq NH3 (1.5 mL), stirring at 40 °C for 30 min, adding TEOS (1.0 mL), and stirring continuously for 24 h. The mixture was then cooled to r.t. and the silica-coated NPs were collected by using a permanent magnet, washed three times with distilled H2O and EtOH, and dried at 60 °C under vacuum for 6 h. A versatile step-by-step assembly strategy was used to fabricate the porous CoFe2O4@SiO2@IRMOF-3 core–shell nanoparticles. Briefly, the CoFe2O4@SiO2 NPs (0.5 g) were dispersed in a solution of Zn(NO3)2 (1.7 g) and H2NH2BDC (0.4 g) in dry DMF (50 mL), and the mixture was stirred at r.t. for 20 min. The solution was then transferred to a Teflon-lined steel autoclave, which was sealed and kept at 100 °C for 20 h. The resulting brown solid was collected with a permanent magnet, washed with EtOH, and dried under vacuum at 60 °C for 6 h.
- 47 Pyrrolidinones 4a–h; General Procedure A mixture of the dialkyl acetylenedicarboxylate 1 (1 mmol), aromatic amine 2 (2 mmol), 37% aq HCHO (3, 5 mmol), and CoFe2O4@SiO2@IRMOF-3 (0.02 g) in MeOH (3 mL) was stirred at r.t. for the appropriate time (Table 2). When the reaction was complete (TLC), the catalyst was separated by using a bar magnet, and the product was collected by filtration and washed with EtOH. Methyl 1-(2-Bromophenyl)-4-[(2-bromophenyl)amino]-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate (4f)White solid; yield: 482 mg (82%); mp 165–166 °C. IR (KBr): 3330, 1686, 1635, 1446, 1298, 825 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.80 (s, 3 H), 4.48 (s, 2 H), 7.03 (t, J = 7.5 Hz, 1 H), 7.18 (t, J = 7.0 Hz, 1 H), 7.33–7.36 (m, 5 H), 7.49–7.51 (m, 1 H), 8.40 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 49.7, 51.5, 106.7, 124.3, 125.1, 126.4, 126.5, 127.8, 129.2, 129.6, 129.7, 130.6, 132.4, 135.0, 135.4, 142.6, 164.1, 165.0. HRMS (ESI): m/z [M + H]+ calcd for C18H14Br2N2O3: 464.9449; found: 464.9455.
- 48 Pyrrolidinones 6a–p and Bipyrrolidinones 8a–e; General ProcedureA mixture of the aromatic amine 3 (1 mmol for product 6; 2 mmol for product 8) and dialkyl acetylenedicarboxylate (1 mmol for product 6; 2 mmol for product 8) in MeOH (3 mL) was stirred at r.t. for 20 min. Amine 5 (1 mmol) or propane-1,3-diamine (7, 1 mmol), 37% aq HCHO (1.5 mmol for product 6; 3.0 mmol for product 8), and CoFe2O4@SiO2@IRMOF-3 (0.02 g) were added successively, and the mixture was stirred at r.t. for the appropriate time (Tables 3 and 4). When the reaction was complete (TLC), the catalyst was separated with a bar magnet, and the product was collected by filtration and washed with EtOH.Methyl 1-(4-Methoxyphenyl)-5-oxo-4-(phenylamino)-2,5-dihydro-1H-pyrrole-3-carboxylate (6a)White solid; yield: 273 mg (81%); mp 120–121 °C. IR (KBr): 3279, 1711, 1688, 1510, 1201, 823 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.74 (s, 3 H), 3.80 (s, 3 H), 4.49 (s, 2 H), 6.84–6.86 (m, 1 H), 6.91 (d, J = 9.0 Hz, 2 H), 7.09 (d, J = 8.5 Hz, 1 H), 7.13–7.15 (m, 1 H), 7.28–7.32 (m, 2 H), 7.64–7.67 (m, 2 H), 8.02 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 48.7, 51.3, 55.5, 100.8, 113.6, 114.3, 119.3, 121.1, 122.8, 124.6, 125.1, 128.3, 157.1, 163.5, 165.1. HRMS (ESI): m/z [M + H]+ calcd for C19H19N2O4: 339.1345; found: 339.1353.Methyl 1-(4-Bromophenyl)-4-(cyclopentylamino)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate (6m)White solid; yield: 336 mg (89%); mp 90–92 °C. IR (KBr): 3335, 1713, 1683, 1259, 844 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.45–1.50 (m, 2 H), 1.60–1.65 (m, 3 H), 1.71–1.75 (m, 2 H), 2.02–2.07 (m, 2 H), 3.78 (s, 3 H), 4.37 (s, 2 H), 5.03 (s, 1 H), 7.49-7.51 (m, 2 H), 7.67–7.69 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 23.7, 34.8, 47.8, 50.9, 54.1, 95.9, 117.7, 120.5, 128.8, 132.0, 137.9, 164.4, 165.5. HRMS (ESI): m/z [M + H]+ calcd for C17H20BrN2O3: 379.0657; found: 379.0661.Dimethyl 4,4'-[Propane-1,3-diylbis(azanediyl)]bis(5-oxo-1-phenyl-2,5-dihydro-1H-pyrrole-3-carboxylate) (8a)White solid; yield: 445 mg (89%); mp 104–105 °C. IR (KBr): 3314, 2950, 1706, 1686, 1499, 1259, 762 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.92–1.97 (m, 2 H), 3.78 (s, 6 H), 3.97–4.01 (m, 4 H), 4.39 (s, 4 H), 7.10 (t, J = 7.5 Hz, 2 H), 7.37 (t, J = 8.0 Hz, 4 H), 7.74 (d, J = 8.0 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 33.2, 40.3, 48.0, 51.0, 118.2, 119.4, 125.0, 129.1, 129.3, 138.8, 164.5, 165.5. HRMS (ESI): m/z [M + H]+ calcd for C27H29N4O6: 505.2087; found: 505.2093.Dimethyl 4,4'-[Propane-1,3-diylbis(azanediyl)]bis[5-oxo-1-(p-tolyl)-2,5-dihydro-1H-pyrrole-3-carboxylate] (8c)White solid; yield: 479 mg (90%); mp 135–136 °C. IR (KBr): 3401, 2951, 1659, 1636, 1455, 1258, 820 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.93–1.95 (m, 2 H), 2.34 (s, 6 H), 3.77 (s, 6 H), 3.97–4.01 (m, 4 H), 4.36 (s, 4 H), 7.17 (d, J = 8.5 Hz, 4 H), 7.60 (d, J = 8.5 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 20.9, 29.7, 40.0, 47.4, 51.0, 119.4, 129.6, 129.7, 132.4, 134.7, 136.3, 161.9, 164.3. HRMS (ESI): m/z [M + H]+ calcd for C29H33N4O6: 533.2400; found: 533.2406.4,4'-[Propane-1,3-diylbis(azanediyl)]bis[1-(4-bromophenyl)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate] (8e)Yellow solid; yield: 574 mg (87%); mp 168–170 °C. IR (KBr): 3324, 2941, 1703, 1687, 1645, 1430, 1290, 1200, 759 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.87–1.90 (m, 2 H), 3.73 (s, 6 H), 3.93-3.95 (m, 4 H), 4.28 (s, 4 H), 7.40–7.45 (m, 4 H), 7.59 (d, J = 9.0 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 33.0, 40.1, 47.8, 51.1, 117.7, 119.3, 119.6, 120.5, 132.0, 137.8, 164.5, 165.5. HRMS (ESI): m/z [M + H]+ calcd for C27H27Br2N4O6: 661.0297; found: 661.0292.