Subscribe to RSS
DOI: 10.1055/s-0036-1588836
Synthesis of Silatrane-Containing Organic Sensitizers as Precursors for the Silyloxyl Anchoring Group in Dye-Sensitized Solar Cells
Publication History
Received: 14 March 2017
Accepted after revision: 28 April 2017
Publication Date:
07 June 2017 (online)
Abstract
A series of organic D-π-A dyes, endowed with different silicon-based anchoring groups, has been prepared to assess the stability of such anchoring moieties on nanocrystalline TiO2 in dye-sensitized solar cells. Due to the difficulties encountered in finding a reliable and robust preparation protocol to obtain pure trialkoxysilanes, replacement with a silatrane moiety was evaluated. It was found that the silatrane group could be easily introduced on three different molecular scaffolds by using a simple amide coupling reaction mediated by EDC-Cl. Furthermore, the spectroscopic properties and anchoring mode on nanocrystalline TiO2 of the silatrane dyes were found to be nearly identical to those of the trialkoxysilane compounds, and both gave a much more stable attachment to the semiconductor compared with their cyanoacrylic acid counterpart, as shown by desorption experiments.
Key words
organic dyes - trialkoxysilane - siltarane - UV/Vis spectroscopy - ATR-IR - dye-sensitized solar cellsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588836.
- Supporting Information
-
References
- 1a Hagfeldt A. Boschloo G. Sun L. Kloo L. Pettersson H. Chem. Rev. 2010; 110: 6595
- 1b Kalyanasundaram K. Dye-Sensitized Solar Cells 2010
- 1c Mishra A. Bäuerle P. Angew. Chem. Int. Ed. 2012; 51: 2020
- 2a Lee C.-P. Lin RY.-Y. Lin L.-Y. Li C.-T. Chu T.-C. Sun S.-S. Lin JT. Ho K.-C. RSC Adv. 2015; 5: 23810
- 2b Ooyama Y. Harima Y. ChemPhysChem 2012; 13: 4032
- 3 Zhang L. Cole JM. ACS Appl. Mater. Interfaces 2015; 7: 3427
- 4 Kakiage K. Nakada Y. Kogure T. Yamamura M. Kyomen T. Unno M. Hanaya M. Silicon Chem. 2008; 3: 303
- 5a Kakiage K. Yamamura M. Fujimura E. Kyomen T. Unno M. Hanaya M. Chem. Lett. 2010; 39: 260
- 5b Consiglio GB. Pedna F. Fornaciari C. de Biani FF. Marotta G. Salvatori P. Basosi R. Angelis FD. Mordini A. Parisi ML. Peruzzini M. Reginato G. Taddei M. Zani L. J. Organomet. Chem. 2013; 723: 198
- 6 Kakiage K. Aoyama Y. Yano T. Otsuka T. Kyomen T. Unno M. Hanaya M. Chem. Commun. 2014; 6379
- 7 Kakiage K. Aoyama Y. Yano T. Oya K. Fujisawa J.-i. Hanaya M. Chem. Commun. 2015; 15894
- 8 Sobuś J. Gierczyk BE. J. Burdziński G. Jancelewicz M. Polanski E. Hagfeldt A. Ziółek MZ. Chem. Eur. J. 2016; 22: 15807
- 9 Hagberg DP. Marinado T. Karlsson KM. Nonomura K. Qin P. Boschloo G. Brinck T. Hagfeldt A. Sun L. J. Org. Chem. 2007; 72: 9550
- 10 Franchi D. Calamante M. Reginato G. Zani L. Peruzzini M. Taddei M. de Biani FF. Basosi R. Sinicropi A. Colonna D. Carlo AD. Mordini A. Tetrahedron 2014; 70: 6285
- 11a Dessì A. Calamante M. Mordini A. Peruzzini M. Sinicropi A. Basosi R. de Biani FF. Taddei M. Colonna D. Carlo AD. Reginato G. Zani L. Chem. Commun. 2014; 13952
- 11b Dessì A. Calamante M. Mordini A. Peruzzini M. Sinicropi A. Basosi R. de Biani FF. Taddei M. Colonna D. Carlo AD. Reginato G. Zani L. RSC Adv. 2015; 5: 32657
- 12 Manoso AS. Deshong P. J. Org. Chem. 2001; 66: 7449
- 13 Sasaki K. Crich D. Org. Lett. 2010; 13: 2256
- 14a McNeil KJ. DiCaprio JA. Walsh DA. Pratt RF. J. Am. Chem. Soc. 1980; 102: 1859
- 14b Salon M.-CB. Belgacem MN. Phosphorus, Sulfur Silicon Relat. Elem. 2011; 186: 240
- 15 Frye CL. Vincent GA. Finzel WA. J. Am. Chem. Soc. 1971; 93: 6805
- 16 Brennan BJ. Keirstead AE. Liddell PA. Vail SA. Moore TA. Moore AL. Gust D. Nanotechnology 2009; 20: 505203
- 17 Materna KL. Rudshteyn B. Brennan BJ. Kane MH. Bloomfield AJ. Huang DL. Shopov DY. Batista VS. Crabtree RH. Brudvig GW. ACS Catal. 2016; 6: 5371
- 18 Brennan BJ. Llansola Portoles MJ. Liddell PA. Moore TA. Moore AL. Gust D. Phys. Chem. Chem. Phys. 2013; 15: 16605
- 19a Voronkov MG. Kuznetsova GA. Russ. J. Gen. Chem. 2009; 79: 924
- 19b Brennan BJ. Gust D. Brudvig GW. Tetrahedron Lett. 2014; 55: 1062
- 20 Koumura N. Wang Z.-S. Mori S. Miyashita M. Suzuki E. Hara K. J. Am. Chem. Soc. 2006; 128: 14256
- 21 We also recorded UV/Vis spectra of silatrane MB104 in CHCl3 (Figure S1, see the Supporting Information), and compared this with literature data known for ADEKA-1. Also in this case, MB104 showed an absorption maximum and a molar extinction coefficient comparable both to the carboxylic acid (MK-2) and siloxane (ADEKA-1) counterparts
- 22 Wang Z.-S. Koumura N. Cui Y. Takahashi M. Sekiguchi H. Mori A. Kubo T. Furube A. Hara K. Chem. Mater. 2008; 20: 3993
- 23 Kelly SM. Lipshutz BH. Org. Lett. 2014; 16: 98
- 24 Brennan JB. Gust D. Brudvig DW. Tetrahedron Lett. 2014; 55: 1062
- 25 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Scalmani G. Barone V. Mennucci B. Petersson GA. Nakatsuji H. Caricato M. Li X. Hratchian HP. Izmaylov AF. Bloino J. Zheng G. Sonnenberg JL. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery JA. Jr. Peralta JE. Ogliaro F. Bearpark M. Heyd JJ. Brothers E. Kudin KN. Staroverov VN. Keith T. Kobayashi R. Normand J. Raghavachari K. Rendell A. Burant JC. Iyengar SS. Tomasi J. Cossi M. Rega N. Millam JM. Klene M. Knox JE. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Martin RL. Morokuma K. Zakrzewski VG. Voth GA. Salvador P. Dannenberg JJ. Dapprich S. Daniels AD. Farkas O. Foresman JB. Ortiz JV. Cioslowski J. Fox DJ. Gaussian 09, Revision C.01 . Gaussian Inc; Wallingford: 2010
- 26 Becke AD. J. J. Chem. Phys. 1993; 98: 5648