Synlett 2017; 28(14): 1845-1851
DOI: 10.1055/s-0036-1588829
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Mediated Direct Sulfenylation of 4-Hydroxyquinolinones and 4-Hydroxypyridones with Aryl Thiols via a C−H Functionalization Process

Tao Guo*
a   School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. of China   Email: taoguo@haut.edu.cn
b   School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, P. R. of China
,
Hongyan Wang
a   School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. of China   Email: taoguo@haut.edu.cn
› Author Affiliations
Supported by: Doctor Fund of Henan University of Technology 2013BS053
Supported by: Colleges and Universities Key Research Program Foundation of Henan Province 17A150006
Supported by: Science Foundation Of Henan University of Technology 2015QNJH08
Further Information

Publication History

Received: 12 March 2017

Accepted after revision: 18 April 2017

Publication Date:
04 May 2017 (online)


Abstract

An efficient approach for the direct sulfanylation of 4-hydroxyquinolinones and 4-hydroxypyridones with aryl thiols in the presence of CuI/DMSO has been developed. The substrate scope is broad, allowing facile synthesis of a range of structurally diverse 3-sulfanyl-4-hydroxyquinolinones and 3-sulfanyl-4-hydroxypyridones in good efficiency.

Supporting Information

 
  • References and Notes

    • 1a Iwasaki M. Iyanaga M. Tsuchiya Y. Nishimura Y. Li W. Li Z. Nishihara Y. Chem. Eur. J. 2014; 20: 2459
    • 1b Ali W. Guin S. Rout SK. Gogoi A. Patel BK. Adv. Synth. Catal. 2014; 356: 3099
    • 1c Xi H. Deng B. Zong Z. Lu S. Li Z. Org. Lett. 2015; 17: 1180
    • 1d Shen C. Zhang P. Sun Q. Bai S. Hor TS. A. Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 1e Wang H. Wang L. Shang J. Li X. Wang H. Gui J. Lei A. Chem. Commun. 2012; 48: 76
    • 1f Zhang C.-P. Vicic DA. J. Am. Chem. Soc. 2012; 134: 183
    • 1g Halim M. Yee DJ. Sames D. J. Am. Chem. Soc. 2008; 130: 14123
    • 1h Pedras MS. C. Zheng Q.-A. Strelkov S. J. Agric. Food Chem. 2008; 56: 9949
    • 1i Wang X. Cui L. Zhou N. Zhu W. Wang R. Qian X. Xu Y. Chem. Sci. 2013; 4: 2936
    • 1j Wilson AJ. Kerns JK. Callahan JF. Moody CJ. J. Med. Chem. 2013; 56: 7463
    • 2a Qiu J.-K. Hao W.-J. Wang D.-C. Wei P. Sun J. Jiang B. Tu S.-J. Chem. Commun. 2014; 50: 14782
    • 2b Tran LD. Popov I. Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
    • 2c Tyson EL. Ament MS. Yoon TP. J. Org. Chem. 2012; 78: 2046
    • 2d Yang F.-L. Wang F.-X. Wang T.-T. Wang Y.-J. Tian S.-K. Chem. Commun. 2014; 50: 2111
    • 2e Yang Y. Tang L. Zhang S. Guo X. Zha Z. Wang Z. Green Chem. 2014; 16: 4106
    • 2f Yoshimatsu M. Ohta K. Takahashi N. Chem. Eur. J. 2012; 18: 15602
    • 3a Chen C.-K. Chen Y.-W. Lin C.-H. Lin H.-P. Lee C.-F. Chem. Commun. 2010; 46: 282
    • 3b Correa A. Mancheño OG. Bolm C. Chem. Soc. Rev. 2008; 37: 1108
    • 3c Fernández-Rodríguez MA. Shen Q. Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 3d Larsson PF. Correa A. Carril M. Norrby PO. Bolm C. Angew. Chem. 2009; 121: 5801
    • 3e Sayah M. Organ MG. Chem. Eur. J. 2011; 17: 11719
    • 3f Li GY. Angew. Chem. Int. Ed. 2001; 40: 1513
    • 3g Ma D. Geng Q. Zhang H. Jiang Y. Angew. Chem. Int. Ed. 2010; 49: 1291
    • 4a Arisawa M. Suzuki T. Ishikawa T. Yamaguchi M. J. Am. Chem. Soc. 2008; 130: 12214
    • 4b Ranu BC. Chattopadhyay K. Banerjee S. J. Org. Chem. 2006; 71: 423
    • 6a Singh N. Singh R. Raghuvanshi DS. Singh KN. Org. Lett. 2013; 15: 5874
    • 6b Wang T.-T. Yang F.-L. Tian S.-K. Adv. Synth. Catal. 2015; 357: 928
    • 7a Samanta R. Antonchick AP. Angew. Chem. Int. Ed. 2011; 50: 5217
    • 7b Shen C. Xia H. Yan H. Chen X. Ranjit S. Xie X. Tan D. Lee R. Yang Y. Xing B. Chem. Sci. 2012; 3: 2388
    • 7c Xu R. Wan J.-P. Mao H. Pan Y. J. Am. Chem. Soc. 2010; 132: 15531
    • 7d Yang Y. Hou W. Qin L. Du J. Feng H. Zhou B. Li Y. Chem. Eur. J. 2014; 20: 416
    • 7e Zhu J. Chen Z. Xie H. Li S. Wu Y. Org. Lett. 2010; 12: 2434
    • 7f Zhao W. Xie P. Bian Z. Zhou A. Ge H. Zhang M. Ding Y. Zheng L. J. Org. Chem. 2015; 80: 9167
    • 7g Ding Y. Wu W. Zhao W. Li Y. Xie P. Huang Y. Liu Y. Zhou A. Org. Biomol. Chem. 2016; 14: 1428
    • 7h Wang D. Guo S. Zhang R. Lin S. Yan Z. RSC Adv. 2016; 6: 54377
    • 7i Ravi C. Mohan DC. Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
    • 7j Paul S. Shrestha R. Edison TN. J. I. Lee YR. Kim SH. Adv. Synth. Catal. 2016; 358: 3050
    • 7k Ravi C. Mohan DC. Adimurthy S. Org. Lett. 2014; 16: 2978
    • 8a Zhang S. Qian P. Zhang M. Hu M. Cheng J. J. Org. Chem. 2010; 75: 6732
    • 8b Ge W. Wei Y. Green Chem. 2012; 14: 2066
    • 8c Zhang D. Cui X. Zhang Q. Wu Y. J. Org. Chem. 2015; 80: 1517
    • 8d Sang P. Chen Z. Zou J. Zhang Y. Green Chem. 2013; 15: 2096
    • 8e Zhang J. Shao Y. Wang H. Luo Q. Chen J. Xu D. Wan X. Org. Lett. 2014; 16: 3312
    • 8f Zhang M. Xie P. Zhao W. Niu B. Wu W. Bian Z. Pittman CU. Jr. Zhou A. J. Org. Chem. 2015; 80: 4176
    • 8g Yu C. Zhang C. Shi X. Eur. J. Org. Chem. 2012; 1953
    • 8h Chen M. Huang Z.-T. Zheng Q.-Y. Chem. Commun. 2012; 48: 11686
    • 8i Saidi O. Marafie J. Ledger AE. Liu PM. Mahon MF. Kociok-Köhn G. Whittlesey MK. Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
    • 8j Yang M. Shen H. Li Y. Shen C. Zhang P. RSC Adv. 2014; 4: 26295
    • 8k Xiao F. Chen H. Xie H. Chen S. Yang L. Deng G.-J. Org. Lett. 2014; 16: 50
    • 8l Li X. Xu X. Hu P. Xiao X. Zhou C. J. Org. Chem. 2013; 78: 7343
    • 8m Li X. Xu Y. Wu W. Jiang C. Qi C. Jiang H. Chem. Eur. J. 2014; 20: 7911
    • 8n Zhao W. Xie P. Bian Z. Zhou A. Ge H. Zhao M. Ding Y. Zheng L. J. Org. Chem. 2015; 80: 9167
    • 8o Zhao W. Zhou A. ChemCatChem 2015; 7: 3464
  • 9 Zhang H. Bao X. Song Y. Qu J. Wang B. Tetrahedron 2015; 71: 8885
  • 10 Hiebel M.-A. Berteina-Raboin S. Green Chem. 2015; 17: 937
  • 11 Zhao W. Xie P. Bian Z. Zhou A. Ge H. Niu B. Ding Y. RSC Adv. 2015; 5: 59861
  • 12 Ranjit S. Lee R. Heryadi D. Shen C. Wu J. Zhang P. Huang K.-W. Liu X. J. Org. Chem. 2011; 76: 8999
    • 13a Guo T. Liu Y. Zhao Y.-H. Zhang P.-K. Han S.-L. Liu H.-M. Tetrahedron Lett. 2016; 57: 4629
    • 13b Guo T. Tetrahedron Lett. 2016; 57: 5837
    • 14a Pirrung MC. Blume F. J. Org. Chem. 1999; 64: 3642
    • 14b Enoua GC. Lahm G. Uray G. Stadlbauer W. J. Heterocycl. Chem. 2014; 51: 263
    • 15a Girotra NN. Patchett AA. Zimmerman SB. Achimov DL. Wendler NL. J. Med. Chem. 1980; 23: 209
    • 15b Schnell B. Kappe T. J. Heterocycl. Chem. 2000; 37: 911
    • 16a Stein AL. Alves D. Rocha JT. Nogueira CW. Zeni G. Org. Lett. 2008; 10: 4983
    • 16b Ravi C. Reddy NN. K. Pappula V. Samanta S. Adimurthy S. J. Org. Chem. 2016; 81: 9964
    • 16c Ji X.-M. Zhou S.-J. Chen F. Zhang X.-G. Tang R.-Y. Synthesis 2015; 47: 659
  • 17 General Procedure: DMF (0.5 mL) was added into a flask charged with 4-hydroxyquinolinone (0.25 mmol), aryl thiol (0.375 mmol), DMSO (58.6 mg), and CuI (23.7 mg, 0.125 mmol). The mixture was heated at 100 °C and stirred in a closed tube for 6 h, then cooled to room temperature, diluted with EtOAc (20 mL) and washed with H2O (10 mL). The aqueous layer was extracted with EtOAc (2 × 5 mL) and the combined organic phase was dried over Na2SO4. After evaporation of the solvents the residue was purified by flash column chromatography (silica gel; PE/EtOAc, 3:1) to afford the desired products 3 and 5. 4-Hydroxy-1-methyl-3-(phenylthio)quinolin-2(1H)-one (3a): Yellow solid; mp 237–239 °C. 1H NMR (400 MHz, CDCl3): δ = 3.73 (s, 3 H), 7.14–7.18 (m, 1 H), 7.21–7.31 (m, 5 H), 7.39 (d, J = 8.4 Hz, 1 H), 7.65 (td, J = 1.6, 8.4 Hz, 1 H), 7.85 (s, 1 H), 8.07 (dd, J = 1.6, 8.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 30.3, 102.4, 114.3, 114.4, 122.2, 125.1, 126.8, 128.0, 129.3, 132.9, 134.3, 140.5, 161.7, 163.5. IR (KBr): 2927, 2844, 2368, 1618, 1581, 1471, 1275, 1161, 762, 742 cm–1. HRMS: m/z [M++H] calcd for C16H14NO2S+: 284.07398; found: 284.07385. 4-Hydroxy-1,6-dimethyl-3-(phenylthio)pyridin-2(1H)-one (5a): Yellow solid; mp 154–156 °C. 1H NMR (400 MHz, CDCl3): δ = 2.37 (s, 3 H), 3.51 (s, 3 H), 6.02 (s, 1 H), 7.11–7.17 (m, 1 H), 7.20–7.23 (m, 4 H), 7.37 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 21.5, 31.8, 98.6, 99.3, 126.4, 127.5, 129.2, 135.0, 149.6, 163.6, 166.9. IR (KBr): 2922, 2852, 2360, 1653, 1568, 1471, 1404, 1373, 1149, 1024, 831, 748 cm–1. HRMS: m/z [M++H] calcd for ­C13H14NO2S+: 248.07398; found: 248.07405.