Synlett 2017; 28(12): 1457-1462
DOI: 10.1055/s-0036-1588770
letter
© Georg Thieme Verlag Stuttgart · New York

Regioselective Synthesis of [6,6]-Phenyl-C71-Butyric Acid Methyl Esters via Sulfur Ylides for Use in Bulk Heterojunction Solar Cells

Takatoshi Ito*
a   Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
,
Yuta Inoue
b   Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan   Email: ito@omtri.or.jp
,
Tetsuo Iwasawa
b   Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan   Email: ito@omtri.or.jp
,
Shuhei Sumino
a   Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
,
Fukashi Matsumoto
a   Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
,
Toshiyuki Iwai
a   Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
,
Kazuyuki Moriwaki
a   Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
,
Yuko Takao
a   Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
,
Takumi Mizuno
a   Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
,
Toshinobu Ohno
a   Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
› Author Affiliations
Supported by: This research is partially supported by the Matching Planner Program from Japan Science and Technology Agency, Grant / Award Number: ‘MP27115662970’
Further Information

Publication History

Received: 26 January 2017

Accepted after revision: 07 March 2017

Publication Date:
10 April 2017 (online)


Abstract

We herein report the development of a regioselective synthetic route to [70]methanofullerenes, which have potential for application as electron acceptors in solution-processed bulk heterojunction solar cells. Sterically hindered sulfur ylide, generated in situ from their corresponding sulfonium salts in the presence of 1,8-diazabicy­clo[5.4.0]undec-7-ene (DBU) as the base, smoothly reacted with [70]fullerene to afford the α-type [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) in high purity (up to 98%). Furthermore, we successfully demonstrated the gram-scale synthesis of [70]PCBM.

Supporting Information

 
  • References and Notes

    • 1a Dang MT. Hirsch L. Wantz G. Wuest JD. Chem. Rev. 2013; 113: 3734
    • 1b Thilgen C. Diederich F. Chem. Rev. 2006; 106: 5049
    • 1c Nambo M. Segawa Y. Itami K. J. Am. Chem. Soc. 2011; 133: 2402
    • 1d Lu S. Jin T. Kwon E. Bao M. Yamamoto Y. Angew. Chem. Int. Ed. 2012; 51: 802
    • 1e Hashiguchi M. Obata N. Maruyama M. Yeo KS. Ueno T. Ikebe T. Takahashi I. Matsuo Y. Org. Lett. 2012; 14: 3276
    • 1f Yoshimura K. Matsumoto K. Uetani Y. Sakumichi S. Hayase S. Kawatsura M. Itoh T. Tetrahedron 2012; 68: 3605
    • 1g Li F.-B. You X. Wang G.-W. J. Org. Chem. 2012; 77: 6643
    • 1h Morinaka Y. Nobori M. Murata M. Wakamiya A. Sagawa T. Yoshikawa S. Murata Y. Chem. Commun. 2013; 49: 3670
    • 2a Hummelen JC. Knight BW. LePeq F. Wudl F. Yao J. Wilkins CL. J. Org. Chem. 1995; 60: 532
    • 2b Janssen RA. J. Hummelen JC. Wudl F. J. Am. Chem. Soc. 1995; 117: 544
    • 3a Shaheen SE. Brabec CJ. Sariciftci NS. Padinger F. Fromherz T. Hummelen JC. Appl. Phys. Lett. 2001; 78: 841
    • 3b Wienk MM. Kroon JM. Verhees WJ. Knol J. Hummelen JC. vanHal PA. Janssen RA. J. Angew. Chem. Int. Ed. 2003; 42: 3371
    • 4a Tsai J.-H. Lai Y.-C. Higashihara T. Lin C.-J. Ueda M. Chen W.-C. Macromolecules 2010; 43: 6085
    • 4b Li G. Shrotriya V. Huang JS. Yao Y. Moriarty T. Emery K. Yang Y. Nat. Mater. 2005; 4: 864
    • 4c Ma WL. Yang CY. Gong X. Lee KH. Heeger AJ. Adv. Funct. Mater. 2005; 15: 1617
    • 5a Li K. Li Z. Feng K. Xu X. Wang L. Peng Q. J. Am. Chem. Soc. 2013; 135: 13549
    • 5b Liang Y. Feng D. Wu Y. Tsai S.-T. Li G. Ray C. Yu L. J. Am. Chem. Soc. 2009; 131: 7792
    • 5c Khlyabich PP. Burkhart B. Ng CF. Thompson BC. Macromolecules 2011; 44: 5079
    • 6a Chen H.-Y. Hou J. Zhang S. Liang Y. Yang G. Yang Y. Yu L. Wu Y. Li G. Nat. Photonics 2009; 3: 649
    • 6b Liang Y. Xu Z. Xia J. Tsai S.-T. Wu Y. Li G. Ray C. Yu L. Adv. Mater. 2010; 22: E135
    • 6c Huo L. Zhang S. Guo X. Xu F. Li Y. Hou J. Angew. Chem. Int. Ed. 2011; 50: 9697
    • 6d Chu T.-Y. Lu J. Beaupré S. Zhang Y. Pouliot J.-R. Wakim S. Zhou J. Leclerc M. Li Z. Ding J. Tao Y. J. Am. Chem. Soc. 2011; 133: 4250
    • 6e You J. Dou L. Yoshimura K. Kato T. Ohya K. Moriarty T. Emery K. Chen C.-C. Gao J. Li G. Yang Y. Nat. Commun. 2013; 4: 1446
    • 6f Chen C.-C. Chang W.-H. Yoshimura K. Ohya K. You J. Gao J. Hong Z. Yang Y. Adv. Mater. 2014; 26: 5670
    • 6g Lu LY. Chen W. Xu T. Yu LP. Nat. Commun. 2015; 6: 743
    • 7a Hirsch A. Brettreich M. Fullerenes: Chemistry and Reactions. Wiley-VCH; Weinheim: 2005
    • 7b Yamada M. Akasaka T. Nagase S. Chem. Rev. 2013; 113: 7209
    • 8a Thilgen C. Herrmann A. Diederich F. Angew. Chem. Int. Ed. 1997; 36: 2269
    • 8b Avent AG. Durwish AD. Heimbach HW. Kroto HW. Meidine MF. Parson JP. Remars C. Roers R. Ohashi O. Taylor R. Walton DM. R. J. Chem. Soc., Perkin Trans. 2 1994; 15
    • 8c Hawkins JM. Meyer A. Solow MA. J. Am. Chem. Soc. 1993; 115: 7499
    • 8d Smith AB. III. Strongin RM. Brard L. Furst GT. Romanow WJ. Owens KG. Goldschmidt RJ. J. Chem. Soc., Chem. Commun. 1994; 2187
    • 8e Meier MS. Poplawska M. Compton AL. Shaw JP. Selegue JP. Guarr TF. J. Am. Chem. Soc. 1994; 116: 7044
    • 8f Herrmann A. Diederich F. Thilgen C. Meer H.-U. Muller WH. Helv. Chim. Acta 1994; 77: 1689
    • 8g Wilson SR. Lu Q. J. Org. Chem. 1995; 60: 6496
    • 8h Wang Y. Schuster DI. Wilson SR. J. Org. Chem. 1996; 61: 5198
    • 8i Smith AB. III. Strongin RM. Brard L. Furst GT. Romanow WJ. Owens KG. Goldschmidt RJ. King RC. J. Am. Chem. Soc. 1995; 117: 5492
    • 8j Karfunkel HR. Hirsch A. Angew. Chem. Int. Ed. 1992; 31: 7468
    • 9a Bouwer RK. M. Hummelen JC. Chem. Eur. J. 2010; 16: 11250
    • 9b Bouwer RK. M. Wetzelaer G.-JA. H. Blom PW. M. Hummelen JC. J. Mater. Chem. 2012; 22: 15412
  • 10 Suzuki T. Jpn. Kokai Tokkyo Koho JP 2009076683A, 2009
  • 11 Umeyama T. Miyata T. Jakowetz AC. Shibata S. Kurotobi K. Higashino T. Koganezawa T. Tsujimoto M. Gélinas S. Matsuda W. Seki S. Friend RH. Imahori H. Chem. Sci. 2017; 8: 181
  • 13 Vidal S. Izquierdo M. Law WK. Jiang K. Filippone S. Perles J. Yan H. Martín N. Chem. Commun. 2016; 52: 12733

    • For reviews, see:
    • 14a Clark JS. Nitrogen, Oxygen and Sulfur Ylide Chemistry: A Practical Approach in Chemistry. Oxford University Press; Oxford: 2002
    • 14b McGarrigle EM. Myers EL. Illa O. Michael A. Shaw MA. Samantha L. Riches SL. Aggarwal VK. Chem. Rev. 2007; 107: 5841
  • 15 Methyl 5-bromo-5-phenylpentanoate (1) and dimethyl (5-methoxy-5-oxo-1-phenylpentyl) sulfonium tetrafluoroborate (2a) were prepared according to reference 12a.
  • 16 Representative Procedure for the Preparation of Sulfonium Salts; Dodecyl Methyl (5-Methoxy-5-oxo-1-phenylpentyl) Sulfonium Tetrafluoroborate (2b): To a solution of methyl 5-bromo-5-phenylpentanoate (1; 271 mg, 1.0 mmol) and dodecyl methyl sulfide (216 mg, 1.0 mmol) in CH2Cl2 (2 mL) was added silver tetrafluoroborate (195 mg, 1.0 mmol) at 0 °C. The resulting mixture was then warmed gradually to r.t. over 4 h with stirring. After filtration through Celite® to remove the precipitate, the filtrate was concentrated under reduced pressure. The residue was then washed twice by decantation with hexane (10 mL), and the solvent was removed in vacuo to give a diastereomeric mixture (ca. 1:1) of sulfonium salt 2b as a viscous oil in 87% yield (430 mg). All sulfonium salts were stored at –15 °C prior to use to inhibit their gradual degradation. 1H NMR (270 MHz, CDCl3): δ = 7.49 (s, 5 H), 4.97 (t, J = 5.9 Hz, 1 H), 3.64 (s, 1.5 H), 3.63 (s, 1.5 H), 3.43 (t, J = 8.1 Hz, 1 H), 3.14–3.24 (m, 0.5 H), 3.05 (s, 1.5 H), 2.78–2.88 (m, 0.5 H), 2.57 (s, 1.5 H), 2.21–2.41 (m, 4 H), 1.26–1.96 (m, 22 H), 0.88 (t, J = 6.2 Hz, 3 H). 13C NMR (68 MHz, CDCl3): δ = 173.27, 131.02, 130.72, 130.66, 130.50, 130.01, 129.63, 129.15, 60.66, 59.99, 51.61, 40.77, 40.73, 35.97, 32.54, 32.50, 31.86, 30.31, 29.98, 29.56, 29.50, 29.43, 29.34, 29.29, 29.17, 29.07, 28.92, 28.68, 28.59, 28.38, 28.04, 24.88, 24.38, 22.64, 21.78, 21.65, 21.44, 20.15, 17.31, 14.07. IR (neat): 2925, 2854, 1735, 1458, 1437, 1060, 710 cm–1. HRMS (ESI): m/z [M – BF4]+ calcd for C25H43O2S+: 407.2978; found: 407.2955. Isopropyl Methyl (5-Methoxy-5-oxo-1-phenylpentyl) Sulfonium Tetrafluoroborate (2c): White solid, 74% (273 mg) yield, diastereomeric mixture (ca. 1:1.2); mp 95.3–96.2 °C. 1H NMR (300 MHz, CDCl3): δ = 7.46–7.51 (m, 5 H), 4.89 (t, J = 9.6 Hz, 0.45 H), 4.80 (t, J = 6.6 Hz, 0.55 H), 3.94 (quin, J = 6.9 Hz, 0.55 H), 3.64 (s, 1.65 H), 3.62 (s, 1.35 H), 3.39 (quin, J = 6.9 Hz, 0.45 H), 3.01 (s, 1.35 H), 2.47 (s, 1.65 H), 2.22–2.43 (m, 4 H), 1.46–1.66 (m, 5.3 H), 1.39 (d, J = 6.9 Hz, 1.35 H), 1.30 (d, J = 6.9 Hz, 1.35 H). 13C NMR (75 MHz, CDCl3): δ = 173.18, 131.62, 130.66, 130.58, 130.45, 130.03, 129.96, 129.29, 128.74, 58.36, 58.19, 51.56, 51.52, 45.14, 44.98, 32.69, 32.52, 30.62, 30.36, 21.64, 21.20, 19.11, 18.68, 17.01, 16.53, 16.38, 15.90. IR (neat): 3021, 2943, 1731, 1459, 1440, 1265, 1151, 1054, 733, 711 cm–1. HRMS (ESI): m/z [M – BF4]+ calcd for C16H25O2S+: 281.1570; found: 281.1547. Isopropyl Propyl (5-Methoxy-5-oxo-1-phenylpentyl) Sulfonium Tetrafluoroborate (2d): Viscous oil, 65% (258 mg) yield, diastereomeric mixture (ca. 1:1). 1H NMR (300 MHz, CDCl3): δ = 7.44–7.58 (m, 5 H), 5.03 (dd, J = 1.3, 8.4 Hz, 0.5 H), 4.88 (dd, J = 3.5, 9.6 Hz, 0.5 H), 4.08 (sept, J = 6.6 Hz, 0.5 H), 3.37–3.68 (m, 4 H), 3.28 (sept, J = 6.6 Hz, 0.5 H), 3.07–3.16 (m, 0.5 H), 2.86–2.96 (m, 0.5 H), 2.17–2.46 (m, 4 H), 1.21–2.05 (m, 12 H), 1.17 (t, J = 7.8 Hz, 1.5 H), 0.79 (t, J = 7.8 Hz, 1.5 H). 13C NMR (68 MHz, CDCl3): δ = 172.79, 131.36, 130.93, 130.05, 129.97, 129.53, 129.41, 129.02, 128.38, 65.23, 57.89, 57.30, 51.06, 44.75, 44.50, 36.97, 36.42, 32.28, 32.11, 30.26, 30.08, 20.99, 20.91, 19.91, 19.26, 18.39, 18.22, 16.42, 15.82, 14.70, 12.35, 11.98. IR (neat): 2970, 2879, 1731, 1456, 1438, 1381, 1057, 709, 520 cm–1. HRMS (ESI): m/z [M – BF4]+ calcd for C18H29O2S+: 309.1883; found: 309.1858. Diisopropyl (5-Methoxy-5-oxo-1-phenylpentyl) Sulfonium Tetrafluoroborate (2e): White solid, 82% (325 mg) yield; mp 67.6–68.5 °C. 1NMR (300 MHz, CDCl3): δ = 7.32–7.57 (m, 5 H), 4.94 (dd, J = 5.5, 9.9 Hz, 1 H), 4.11 (sept, J = 7.0 Hz, 1 H), 3.63 (s, 3 H), 3.47 (sept, J = 7.0 Hz, 1 H), 2.19–2.45 (m, 4 H), 1.46–1.78 (m, 8 H), 1.44 (d, J = 8.2 Hz, 3 H), 1.23 (d, J = 7.0 Hz, 3 H). 13C NMR (68 MHz, CDCl3): δ = 172.67, 131.52, 129.78, 129.31, 128.66, 54.56, 50.95, 44.39, 43.88, 32.06, 31.28, 20.72, 19.51, 18.88, 18.74, 18.60. IR (neat): 2950, 1731, 1456, 1439, 1271, 1083, 720, 533, 522 cm–1. HRMS (ESI): m/z [M – BF4]+ calcd for C18H29O2S+: 309.1883; found: 309.1857. Diisobutyl (5-Methoxy-5-oxo-1-phenylpentyl) Sulfonium tetrafluoroborate (2f): Viscous oil, 61% (259 mg) yield. 1H NMR (300 MHz, CDCl3): δ = 7.47–7.59 (m, 5 H), 5.06 (dd, J = 8.5, 1.3 Hz, 1 H), 3.63 (s, 3 H), 3.34–3.53 (m, 2 H), 3.11–3.18 (m, 1 H), 2.82–2.89 (m, 1 H), 2.03–2.46 (m, 5 H), 1.45–1.72 (m, 2 H), 1.26–1.41 (m, 1 H), 1.18 (dd, J = 8.5, 1.8 Hz, 6 H), 0.89 (d, J = 6.6 Hz, 3 H), 0.76 (d, J = 6.6 Hz, 3 H). 13C NMR (68 MHz, CDCl3): δ = 173.05, 131.00, 130.50, 129.73, 129.20, 60.76, 51.35, 49.03, 48.71, 32.38, 29.96, 26.09, 25.79, 21.61, 21.47, 21.14, 20.90. IR (neat): 3064, 2965, 2937, 2877, 1733, 1467, 1458, 1438, 1200, 1173, 1058, 735 cm–1. HRMS (ESI): m/z [M – BF4]+ calcd for C20H33O2S+: 337.2196; found: 337.2166
  • 17 Preparative Synthesis of α-[6,6]-Phenyl-C71-butyric Acid Methyl Ester (α-[70]PCBM): To a stirred mixture of sulfonium salt 2e (943 mg, 2.38 mmol) and fullerene C70 (1.0 g, 1.19 mmol) in ODCB (65 mL) was added a solution of DBU (545.2 mg, 3.57 mmol) in ODCB (15 mL) at 0 °C. After stirring at this temperature for 16 h, AcOH (ca. 3 equiv) was added. The resulting solution was then evaporated to half its original volume, and the resulting reaction mixture was purified by silica gel column chromatography. The desired [70]PCBM was obtained in 51% isolated yield (631 mg) in addition to 15% of the bis-[70]PCBM (215 mg). α-[70]PCBM: 1H NMR (300 MHz, CDCl3): δ = 7.40–7.92 (m, 5 H), 3.67 (s, 3 H), 2.42–2.53 (m, 4 H), 1.99–2.25 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 173.42, 155.97, 155.26, 152.15, 151.92, 151.48, 151.20, 151.13, 150.89, 150.83, 150.59, 150.52, 149.43, 149.39, 149.20, 149.13, 148.58, 148.55, 148.52, 148.42, 148.31, 148.02, 147.96, 147.90, 147.56, 147.52, 147.42, 147.36, 147.02, 146.86, 146.29, 146.09, 145.92, 145.82, 145.64, 144.88, 144.50, 144.09, 143.92, 143.87, 143.74, 143.63, 143.32, 143.24, 142.64, 142.50, 141.71, 141.58, 141.41, 140.95, 140.14, 139.29, 138.90, 137.91, 137.28, 134.00, 133.84, 132.84, 131.59, 130.90, 130.76, 130.65, 130.42, 128.54, 128.21, 71.87, 69.79, 51.72, 35.88, 34.09, 33.81, 21.70. IR (KBr): 2941, 2923, 1737, 1429, 795, 726, 699, 674, 643, 579, 534, 459 cm–1. MS (MALDI): m/z [M] calcd for C72H14O2: 1030; found: 1030. Bis-[70]PCBM:18 1H NMR (300 MHz, CDCl3): δ = 7.37–7.93 (m, 5 H), 3.65–3.67 (m, 3 H), 2.10–2.50 (m, 6 H). MS (MALDI): m/z [M] calcd for C72H14O2: 1220; found: 1220.
  • 18 Lenes M. Shelton SW. Sieval AB. Kronholm DF. Hummelen JC. Blom PW. M. Adv. Funct. Mater. 2009; 19: 3002